a2 United States Patent

US009423978B2

10) Patent No.: US 9,423,978 B2

Long et al. 45) Date of Patent: Aug. 23,2016
(54) JOURNAL MANAGEMENT (58) Field of Classification Search
CPC GO6F 3/0601; GOGF 3/061; GOGF 3/0611;
(71) Applicant: NexGen Storage, Inc., Louisville, CO GOG6F 3/0613; GOG6F 3/0655; GO6F 3/0656;
us) GOGF 3/0658; GOGF 2003/0691; GOGF
12/0607; GOG6F 12/0851; GOGF 12/0868;
(72) Inventors: Kelly E. Long, Westminster, CO (US); GOG6F 12/0879; GOGF 12/0882; GOGF
Sebastian P. Sobolewski, Broomfield, 13/1642; GO6F 13/1647; GOGF 13/1626;
CO (US); Paul A. Ashmore, Longmont, GOGF 13/1673; GOGF 2212/1024; GOGF
CO (US) 2212/1041
See application file for complete search history.
(73) Assignee: NexGen Storage, Inc., Louisville, CO
(56) References Cited
(US)
(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS
patent is extended or adjusted under 35 6,008,823 A * 12/1999 Rhoden GOGF 13/1631
U.S.C. 154(b) by 139 days. 345/535
6,553,454 Bl 4/2003 Harada
(21) Appl. No.: 14/273,533 7,003,644 B2 2/2006 Heath et al.
Continued
(22) Filed. May 8, 2014 OTHEIi PUBLICiTIONS
(65) Prior Publication Data “Command Queuing and Reordering”, Storage Reviews, May 17,
US 2014/0337562 Al Nov. 13, 2014 2007, pp. 2, http://www.storagereview.com/Guide/protCQR html.
(Continued)
Related U.S. Application Data
Primary Examiner — Jared Rutz
(60) Provisional application No. 61/821,201, filed on May Assistant Examiner — William E Baughman
2;121?/[133; grozv (;51130.11211 application No. 61/821,204, filed (74) Attorney, Agent, or Firm — Christopher J. Kulish
(51) Int. CL (57) ABSTRACT
GO6F 3/06 (2006.01) Apparatuses, systems, methods, and computer program
GO6F 11/34 (2006.01) products are disclosed for managing a journal. A method
(Continued) may include reordering storage cgmmands based on differ-
ent storage volumes associated with the storage commands.
(52) US. CL A method may include reordering storage commands based
CPC ..o GO6F 3/0659 (2013.01); GO6F 3/065 on different snapshots associated with the storage com-

(2013.01); GOGF 3/067 (2013.01); GOGF
3/0608 (2013.01); GOGF 3/0619 (2013.01);
GOGF 3/0679 (2013.01); GOGF 11/201
(2013.01); GOGF 11/3034 (2013.01); GO6F
11/3485 (2013.01); GO6F 11/2074 (2013.01);
GOGF 11/3419 (2013.01); GOGF 2201/84
(2013.01); GOG6F 2201/855 (2013.01)

s - -
z B &1
uuuuuu s
Pt

mands. A method may include adjusting a frequency of
writing data from a write buffer based on a rate of write
requests. A method may include adjusting a ratio of storage
capacity for storing mirrored write data to storage capacity
for storing non-mirrored read data.

4 Claims, 14 Drawing Sheets

% Fmsmun

Management

Reply to Request Packet

Sew ds»mh&i

Business Critical | Non Critical }

Block Command Packet/ Request Packat/

Block Result Packet

69A 66 \ 56A 54A 50A 48A 48R 598 5B 568 [668 esB

.

clows smmg

US 9,423,978 B2

Page 2
(51) Int. CL 8,645,657 B2 2/2014 Colgrove et al.
gzgﬁ Zjiz 5388288 2004/0205296 Al* 10/2004 Bearden GOGF %/10/?28
’ 2008/0010284 Al* 1/2008 Beckccoenee. GOGF 11/2064
(56) References Cited 2008/0082770 Al* 4/2008 Ahal ... GOGF ;}/ll/éltgé
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
7,277,984 B2 1072007 Ghosal et al. “The Purity Operating Environment:” Pure Storage, 2014, pp. 6,

7,698,306 B2 4/2010 Watanabe et al.
8,448,178 B2 5/2013 Daly et al.

8,468,318 B2 6/2013 Colgrove et al.
8,589,655 B2 11/2013 Colgrove et al. * cited by examiner

http://www.purestorage.com/flash-array/purity. html.

U.S. Patent Aug. 23,2016 Sheet 1 of 14 US 9,423,978 B2

y~ 20
34 36A 36B 36C
2 QCT A T 4 N s
Storage Customer Accounting Engineering g
Administrator Support %
-
: ! o
: i < 2
26 First Switch 40 g“_’ &’
- Management T | Management k7]
gL >
8 @
</ o
Sackup ’ 388 38C
ources J E’
A %
24 MlSSlon Critical Business Critical Non Critical S
(cluster) N g
1 1 ho
| | % Dﬂ_S
30 Second Switch 61 £ =
' X X
] 88
—44A[—44B | ,—~44C| —44D m o
Ether Ether Ether Ether
Net Net Net Net
~—46A ~—46B N
Storage Storage
28 2
Processor Processor g
©
| | =
Switch 50A Switch 50B é’
S8A Type A | | Type B —~60A| [60B ~ Type B | | Type A —58B n
L T el = Y e Y
1
Ether| | Ether Ether| | Ether
Net Net |SAS||SSD||Memory| |Memor¥" SSE)”SA\\Sl Net Net
)) J J) /7N T))))
68A 66A 56A 54A 52A 48A 48B 52B 54B 56B 66B 68B
32
64
LS og
r§ I-I-I
Backup/Tape Cloud Storage

Server Provider F I G . 1

U.S. Patent

Other Management Server

Aug. 23,2016 Sheet 2 of 14

US 9,423,978 B2

Management Stack 100 10 Stack 102
A A
4 Y N
EtherNet Hardware FC Hardware
Driver 108 Driver 150
TCP/IP
Protocol
110 FC Protocol
Telnet | Web ISCSI 152
Protocol | Protocol Protocol
14 | 112 140
Filter Filter Stack 132
A
Jason Parser Ma1n6aager . =
116 100 Target Driver 160 %
-
L
File System in IO Forward 270 o +
User Space Layer Map 979 k- 5
(FUSE) £le _ g
118 i ; ,'|
lio Foreground Quality of Service 274
Filters { Istats Gollection 276 MM <« @
162 o J|
Pattern DeDup 278 ¢ 2 5| &
Management o o =
- Server Dictionary Dedup 280 M & © < §
120 a Sl H=ra*
10 Journal 282 WM 8 5| =
- - » > o
= @)
m Destage 370 ¢M T of %
Database N Sl s
v Advanced Dedup 372 [©
122 Page Pool 374 ::" |]
v Store Converter 376 | Additional
Background - Hardware
Filters 164 | _ Store Stats Collection 378 And
Software
- Statistics
322 Storage Hardware Driver
— 380
Calc Dictionary
Engine Store FIG 2

U.S. Patent Aug. 23,2016 Sheet 3 of 14 US 9,423,978 B2

y 258

Statistics Database Table

Component |UnigID | TimeStamp | Resolution | Throughput | Queue Depth Latency UseCount
Read | Write | Read | Write | Read | Write | Read | Write

CPU 234 2362 Second 10 11 52 43 9 6 103 | 138
CPU 234 2300 Minute 15 9 76 34 16 4 94 97
CPU 234 2000 Hour 86 56 45 89 5 2 92 435
CPU 234 10 Day 59 87 47 53 16 23 145 | 123
SSD 154 2363 Second 108 | 105 63 74 13 18 98 101
SSD 154 2302 Minute 138 | 207 74 86 12 23 90 103
SSD 154 2005 Hour 172 | 173 76 72 14 21 82 113
SSD 154 17 Day 103 | 187 68 84 10 23 88 101

Ether Net 283 2363 Second 10 11 52 43 9 6 103 138

Ether Net 283 2302 Minute 15 9 76 34 16 4 94 97
Ether Net 283 2005 Hour 86 56 45 89 5 2 92 435
Ether Net 283 17 Day 59 87 47 53 16 23 145 | 123

Criticality 583 2363 Second 10 11 52 43 9 6 103 | 138

Criticality 583 2302 Minute 15 9 76 34 16 4 94 97
Criticality 583 2005 Hour 86 56 45 89 5 2 92 435
Criticality 583 17 Day 59 87 47 53 16 23 145 | 123

Criticality 584 2363 Second 10 11 52 43 9 6 103 | 138

Criticality 584 2302 Minute 15 9 76 34 16 4 94 97
Criticality 584 2005 Hour 86 56 45 89 5 2 92 435
Criticality 584 17 Day 59 87 47 53 16 23 145 | 123

Criticality 585 2363 Second 10 11 52 43 9 6 103 | 138

Criticality 585 2302 Minute 15 9 76 34 16 4 94 97
Criticality 585 2005 Hour 86 56 45 89 5 2 92 435
Criticality 585 17 Day 59 87 47 53 16 23 145 | 123

Volume 493 2363 Second 10 11 52 43 9 6 103 | 138

Volume 493 2302 Minute 15 9 76 34 16 4 94 97
Volume 493 2005 Hour 86 56 45 89 5 2 92 435
Volume 493 17 Day 59 87 47 53 16 23 145 | 123
Initiator 697 2363 Second 10 11 52 43 9 6 103 | 138
Initiator 697 2302 Minute 15 9 76 34 16 4 94 97
Initiator 697 2005 Hour 86 56 45 89 5 2 92 435
Initiator 697 17 Day 59 87 47 53 16 23 145 | 123

FIG. 2A

U.S. Patent Aug. 23,2016 Sheet 4 of 14 US 9,423,978 B2

ISCSI Encapsulation I0B Structure 182
Packetp1 80 /\ [\
EtherNet |m—————————- ¥ InitiatorID 220
P R »VollD 222
TCP -2 ! PageMode 224
Opcode i » LBA / PageNum 226
202 ! » Sector Count / PageOffset 228
DataSeglLen i » Command (R/W) 230
Basic 204 i ErrorCode 232
Header LUN | ! ErrorOffset 234
Segment 206 1----+ NumberOfDataSegments 236
192 scsl i—---> DataSegmentVector 238
Command i —»| DataCRCVector 240
Data Block i LayerID 242
208 ! QOS Attributes 244
Additional | StorelD 246
ISCSI | Header i StoreLBA 248
190 | Segment ! In Time Stamp 250
194 |
Header i IssuerStack 252
Digest | XtraContextStack 254
150 |
Data i ElementID 256
Segment f--=----mmmmmmeeee !
198
Data CRC
Data | it available)
Digest 210
200 E— QOS Attributes 244/‘\
Criticality 260A

AllowedStores 260B
AllowedLatency 260C
Projectedlmpact 260D
ImpactArray 260E

FIG. 3

U.S. Patent

Aug. 23, 2016

Sheet 5 of 14

Volume Ownership Table 286 /'\

Vol ID Storage Processor ID
A 1
B 2
C 2

FIG. 4

US 9,423,978 B2

Sheet 6 of 14 US 9,423,978 B2

U.S. Patent Aug. 23,2016

Layer Map 290 /\

Initiator Initiator
Vol A Vol B @ @ Vol C
Layer=3
\ 4 {
Layer=2 Layer=4
A 4 ¢ h 4
Layer=1 Layer=25
A 4 A 4
Layer=20
Volume Information Table 292 /'\
Vol ID Criticality | LayerID | LBA Offset | “Mowed [Allowed
Stores Latency
A 1 3 0 7 6
B 2 4 0 2 164
C 3 5 0 6 35

FIG.

U.S. Patent Aug. 23,2016 Sheet 7 of 14 US 9,423,978 B2

3007\
\—HOB IoB | .. | l0B

vy — 302
o " Group "
Mission Critical — Scheduler |— Non Critical

Business Critical

— 304A l — 304B —304C
Goal Goal Goal
|_ Scheduler _l |_ Scheduler _l |_ Scheduler _|
IOPs | Latency IOPs | Latency IOPs | Latency
_) l Throughput l l Throughput l l Throughput l
00| I0B I0B IOB IOB IOB IOB I0B 0B I0B
(o]
§ I0B I0B IOB IOB IOB IOB IOB OB IOB
8
g 316J
1] N
% I0B I0B I0OB IOB I0B [o]} I0OB OB IOB
316A1 |316B| |316C 316D | (316E| | 316F 316G| |316H] | 316l
~ ~~ —~ v —~~ —~v lond ~ ond
310A| 308A| 306A 310B| 308B| 306B 310C| 308C| 306C
N V¥
§ Shared i
» Hardware [+
Scheduler
b 312
¥ 314
» IOB | IOB I0B
\ 4
Next
Filter

FIG. 6

U.S. Patent

Aug. 23, 2016

Sheet 8 of 14

¥ 340
Journal
Journal
Page ourn:
342 g

US 9,423,978 B2

640 Giglabytes

Journal
Journal
Page Journal
Entry
Header 346 Entry
344 .
Journal
Journal
Entry
Entry
Data
Header| .
348 Field
= 350

e

FIG. 7

Layerl BA 420 Journal
LayerID 422 Block nglggsl
StorelD 424 351
StorelL BA 426
TimeSeqlD 428
ValidMask 240 Journal Table 3527 4
Elees;:cted z Layer ID LBA Jg:;neal JEL:I??
1 4 7 0
1 15 9 9
1 17 9 9
1 17 10 0
1 14 10 1

U.S. Patent

Aug. 23, 2016

Sheet 9 of 14

Layer Store Table 410 /'\

US 9,423,978 B2

Layer ID Layer LBA Store ID Store LBA | Ref Count
3 0 3 100 1
4 87 5 354 2
5 12 3 203 42
3 100 4 0 9

FIG. 8

U.S. Patent

Aug. 23, 2016

Sheet 10 of 14

US 9,423,978 B2

Management Module

Receiver Module
902

Journal Module
908

Order Module

Destage Module

904 910
Region
Buffer Module Management
906 Module
912

FIG. 9

U.S. Patent Aug. 23,2016 Sheet 11 of 14 US 9,423,978 B2

920
e 300 7\
—>»{ OB | IOB | .. 10B
\ 4
Order
Volume 01 — Module — Volume 03
904
Volume 02
l ¥ 314
OB [IOB|I1IOB|IOB | IOB | IOB | IOB | IOB | .. IOB
\ \.. o 1
922»[y 924»‘y 926~-ry
. . : . Journal
N Mirrored Write Data ; Non-Mirored Read Data . Module
i SSD 54A ¥ 340a 908
A
Journal Journal :
Page Page
342 , 342 e
ESSDﬁ /‘340b
Journal : Journal :
Page Page | i
P 342 342 | i
¢ 9285
Destage
Module
910
A 4
Region
HDD 56 » Management
Module 912

FIG. 10

U.S. Patent Aug. 23,2016 Sheet 12 of 14 US 9,423,978 B2

Receive Storage
1002 AN Commands

!

Adjust Order of
Commands

!

Execute Commands in
1006 AN Adjusted Order

1004 N

End

FIG. 11

U.S. Patent Aug. 23,2016 Sheet 13 of 14 US 9,423,978 B2

1 10%
Start First and
11027 Second Timers

No

First Timer?

Yes 1110
1106 Write Request?
Yes ! Yes

. . Write Data from Buffer to
1108 Reset First Timer Non-Volatile Storage (NN 1112

v

Reset First and
Second Timers

NN 1114

>

FIG. 12

U.S. Patent Aug. 23,2016 Sheet 14 of 14 US 9,423,978 B2

1202 N Mirror Cached Write Data

!

1204 Y Store Cached Read Data

!

Adjust Capacity for
1206 N Storing Write/Read Data

End

FIG. 13

US 9,423,978 B2

1
JOURNAL MANAGEMENT

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/821,201 entitled “PRIMARY
DATA STORAGE SYSTEM WITH A DYNAMICALLY
TUNABLE JOURNAL” and filed on May 8, 2013 for Kelly
E. Long, et al. and of U.S. Provisional Patent Application
No. 61/821,204 entitled “PRIMARY DATA STORAGE
SYSTEM WITH A METADATA STRUCTURE FOR
FACILITATING THE REORDERING OF COMMANDS”
and filed on May 8, 2013 for Kelly E. Long, et al., which are
incorporated herein by reference.

TECHNICAL FIELD

The present disclosure, in various embodiments, relates to
a data storage system suitable for use in a computer network.

BACKGROUND

A computer network may include multiple user comput-
ers, a primary data storage system that stores data provided
by the user computers and provides previously stored data to
the user computers, a networking system that facilitates the
transfer of data between the user computers and the primary
data storage system, or the like. The user computers may
include local data storage capacity. In contrast, the primary
data storage system may be separate from the user comput-
ers with local data storage capacity and may provide the
ability for the user computers to share data/information with
one another.

The network system between the user computers and the
primary data storage system may take a number of forms.
For example, there may be a dedicated channel between
each of the user computers and the primary data storage
system, the network system may include switches (e.g.,
fabric switches) and servers (e.g., initiators) that cooperate
to transfer data between the primary data storage system and
the user computers, or the like.

A secondary data storage system may be associated with
a computer network. A secondary data storage system may
provide secondary storage of data (e.g., storage that is not
constantly available for use by one or more user computers
when the computer network is in a normal/acceptable oper-
ating mode). As such, a secondary data storage system may
be employed to backup data and to facilitate other mainte-
nance functions. In contrast, primary data storage may be
substantially constantly available for use by one or more
user computers, when the computer network is in a normal/
acceptable operating mode or the like.

SUMMARY

Methods are presented for journal management. In one
embodiment, a method includes receiving a plurality of
write commands for different storage volumes. A method, in
another embodiment, includes adjusting an order of write
commands so that write commands directed to a common
storage volume are grouped together. In a further embodi-
ment, a method includes storing data of the write commands
in an adjusted order.

Apparatuses are presented for journal management. In
one embodiment, a buffer module is configured to queue
input/output (I/O) commands associated with different snap-

10

15

20

25

30

35

40

45

50

55

60

65

2

shots of a volume. Different snapshots may be associated
with different time periods. An order module, in another
embodiment, is configured to reorder /O commands based
on which snapshot the I/O commands are associated with. In
a further embodiment, a journal module is configured to
record reordered I/O commands and associated data in a
journal.

An apparatus, in another embodiment, includes means for
mirroring cached write data in one or more journals. In a
further embodiment, an apparatus includes means for cach-
ing read data in at least one journal without mirroring the
cached read data. An apparatus, in one embodiment,
includes means for adjusting a ratio of storage capacity of
one or more journals used for storing mirrored cached write
data to storage capacity of the one or more journals used for
storing non-mirrored cached read data based on storage
requests for data of the one or more journals.

Computer program products comprising a computer read-
able storage medium are presented. In certain embodiments,
a computer readable storage medium stores computer usable
program code executable to perform operations for journal
management. In one embodiment, an operation includes
monitoring a rate at which write requests are received. An
operation, in a further embodiment, includes increasing a
frequency of writing data from a write buffer to a non-
volatile storage medium in response to a rate of write
requests decreasing. In another embodiment, an operation
includes decreasing a frequency of writing data from a write
buffer to a non-volatile storage medium in response to a rate
of write requests increasing.

BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description is included below with
reference to specific embodiments illustrated in the
appended drawings. Understanding that these drawings
depict only certain embodiments of the disclosure and are
not therefore to be considered to be limiting of its scope, the
disclosure is described and explained with additional speci-
ficity and detail through the use of the accompanying
drawings, in which:

FIG. 1 is a schematic block diagram illustrating one
embodiment of a networked computer system that includes
a primary storage system;

FIG. 2 is a schematic block diagram illustrating one
embodiment of a management stack, an I/O stack, and a
fail-over stack;

FIG. 2A is a schematic block diagram illustrating one
embodiment of a statistics database;

FIG. 3 is a schematic block diagram illustrating one
embodiment of an iSCSI encapsulation packet and an input/
out block (IOB) derived from the packet;

FIG. 4 is a schematic block diagram illustrating one
embodiment of a volume ownership table;

FIG. 5 is a schematic block diagram illustrating one
embodiment of a layer map and a volume information table;

FIG. 6 is a schematic block diagram illustrating one
embodiment of operation of a QoS filter of an /O stack for
a primary data storage system;

FIG. 7 is a schematic block diagram illustrating one
embodiment of a journal and related journal table;

FIG. 8 is a schematic block diagram illustrating one
embodiment of a layer store table;

FIG. 9 is a schematic block diagram illustrating one
embodiment of a management module;

US 9,423,978 B2

3

FIG. 10 is a schematic block diagram illustrating one
embodiment of operation of a system for journal manage-
ment;

FIG. 11 is a schematic flow chart diagram illustrating one
embodiment of a method for journal management;

FIG. 12 is a schematic flow chart diagram illustrating a
further embodiment of a method for journal management;
and

FIG. 13 is a schematic flow chart diagram illustrating
another embodiment of a method for journal management.

DETAILED DESCRIPTION

Aspects of the present disclosure may be embodied as an
apparatus, system, method, or computer program product.
Accordingly, aspects of the present disclosure may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment (including firmware, resident software,
micro-code, or the like) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “circuit,” “module,” “apparatus,” or “system.”
Furthermore, aspects of the present disclosure may take the
form of a computer program product embodied in one or
more non-transitory computer readable storage media stor-
ing computer readable and/or executable program code.

Many of the functional units described in this specifica-
tion have been labeled as modules, in order to more par-
ticularly emphasize their implementation independence. For
example, a module may be implemented as a hardware
circuit comprising custom VLSI circuits or gate arrays,
off-the-shelf semiconductors such as logic chips, transistors,
or other discrete components. A module may also be imple-
mented in programmable hardware devices such as field
programmable gate arrays, programmable array logic, pro-
grammable logic devices, or the like.

Modules may also be implemented at least partially in
software for execution by various types of processors. An
identified module of executable code may, for instance,
comprise one or more physical or logical blocks of computer
instructions which may, for instance, be organized as an
object, procedure, or function. Nevertheless, the executables
of an identified module need not be physically located
together, but may comprise disparate instructions stored in
different locations which, when joined logically together,
comprise the module and achieve the stated purpose for the
module.

Indeed, a module of executable code may include a single
instruction, or many instructions, and may even be distrib-
uted over several different code segments, among different
programs, across several memory devices, or the like. Where
a module or portions of a module are implemented in
software, the software portions may be stored on one or
more computer readable and/or executable storage media.
Any combination of one or more computer readable storage
media may be utilized. A computer readable storage medium
may include, for example, but not limited to, an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, or device, or any suitable combination
of the foregoing, but would not include propagating signals.
In the context of this document, a computer readable and/or
executable storage medium may be any tangible and/or
non-transitory medium that may contain or store a program
for use by or in connection with an instruction execution
system, apparatus, processor, or device.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any
combination of one or more programming languages,

10

15

20

25

30

35

40

45

50

55

60

4

including an object oriented programming language such as
Java, Smalltalk, C+4+, C#, Objective C, or the like, conven-
tional procedural programming languages, such as the “C”
programming language, scripting programming languages,
and/or other similar programming languages. The program
code may execute partly or entirely on one or more of a
user’s computer and/or on a remote computer or server over
a data network or the like.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present disclosure. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment,” and
similar language throughout this specification may, but do
not necessarily, all refer to the same embodiment, but mean
“one or more but not all embodiments” unless expressly
specified otherwise. The terms “including,” “comprising,”
“having,” and variations thereof mean “including but not
limited to” unless expressly specified otherwise. An enu-
merated listing of items does not imply that any or all of the
items are mutually exclusive and/or mutually inclusive,
unless expressly specified otherwise. The terms “a,” “an,”
and “the” also refer to “one or more” unless expressly
specified otherwise.

Aspects of the present disclosure are described below
with reference to schematic flowchart diagrams and/or sche-
matic block diagrams of methods, apparatuses, systems, and
computer program products according to embodiments of
the disclosure. It will be understood that each block of the
schematic flowchart diagrams and/or schematic block dia-
grams, and combinations of blocks in the schematic flow-
chart diagrams and/or schematic block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor
of'a computer or other programmable data processing appa-
ratus to produce a machine, such that the instructions, which
execute via the processor or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions and/or acts specified in the schematic flowchart dia-
grams and/or schematic block diagrams block or blocks.

It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. Other steps and methods may be conceived that
are equivalent in function, logic, or effect to one or more
blocks, or portions thereof, of the illustrated figures.
Although various arrow types and line types may be
employed in the flowchart and/or block diagrams, they are
understood not to limit the scope of the corresponding
embodiments. For instance, an arrow may indicate a waiting
or monitoring period of unspecified duration between enu-
merated steps of the depicted embodiment.

In the following detailed description, reference is made to
the accompanying drawings, which form a part thereof. The
foregoing summary is illustrative only and is not intended to
be in any way limiting. In addition to the illustrative aspects,
embodiments, and features described above, further aspects,
embodiments, and features will become apparent by refer-
ence to the drawings and the following detailed description.
The description of elements in each figure may refer to
elements of proceeding figures. Like numbers may refer to
like elements in the figures, including alternate embodi-
ments of like elements.

US 9,423,978 B2

5

Networked Computer System

With reference to FIG. 1, an embodiment of a networked
computer system that includes an embodiment of a primary
data storage system is illustrated. The networked computer
system, hereinafter referred to as system 20, includes a user
level 22, an initiator level 24, a first switch level 26 that
facilitates communication between the user level 22 and the
initiator level 24, a primary data storage level 28, a second
switch level 30 that facilitates communications between the
initiator level 24 and the primary data storage level 28, and
a secondary data storage level 32.

A journal in a primary data storage system 28, in one
embodiment, is a sequenced list of data operations or storage
commands (e.g., write commands, read commands, TRIM
commands) that are executed in the order in which the
operations were added to the list. In one embodiment, a
journal or portion of a journal may be stored in a non-
volatile memory medium such as a solid-state storage device
54 or hard disk drive 56. In a further embodiment, a journal
or a portion of a journal may be stored in volatile memory
52. In another embodiment, a first portion of a journal may
be stored in a non-volatile memory medium such as a
solid-state storage device 54 or hard disk drive 56 and a
second portion of the journal may be stored in volatile
memory 52. In certain embodiments, a page or other portion
of a journal may be dynamically paged or loaded from a
solid-state storage device 54 into volatile memory 52, for
servicing a read request or the like. A journal may comprise
a sequential log, a circular log, an append-only log, a change
log, a delta log, or other sequenced list. Recording storage
commands in a journal, in certain embodiments, allows the
storage commands and associated data to be recovered after
a power failure, a system crash, or another restart event.

The present disclosure is directed to a primary data
storage system 28 that includes a journaling processor (e.g.,
the management module 900 described below) that dynami-
cally tunes a journal. As such, the journaling processor may
assess whether or not to change the current order of opera-
tions in a journal. More specifically, this assessment may be
based on whether reordering can produce a data space and/or
time-speed benefit relative to a particular data store 48. For
example, if the assessment reveals that a sequence of opera-
tions would require a first amount of time to perform on a
particular data store 48 but that reordering the operations
such that two operations that were separated from one
another by one or more intervening operations now occurred
in sequence would require a second amount of time that is
less than the first amount of time, the journaling processor
may reorder the operations. If there is no or little benefit in
reordering the operations, the existing sequence of opera-
tions may be maintained.

In one embodiment, the primary data storage system 28
with dynamically tunable journaling is comprised of: (a) one
or more i/0 ports, each i/o port capable of receiving a packet
with a block command and providing a packet with a reply,
(b) a data store system having at least one data store 48
capable of receiving and storing data in response to a write
block command and/or retrieving and providing data in
response to a read block command, and (c) a storage
processor 46 with a processor and application memory for
executing computer code, the storage processor 46 including
a journaling processor for executing computer code related
to the sequencing of the processing of block related com-
mands. More specifically, the journaling processor may
receive a group of sequenced block commands, analyze the
group of sequenced block commands to determine whether
the sequence of block commands can be reordered to

10

15

20

25

30

35

40

45

50

55

60

65

6

achieve a data space and/or time-speed benefit relative to the
data store, produce a reordered group of block commands if
the analysis indicates a data space and/or time-speed benefit
can be attained, and add one of: (i) the reordered group of
sequenced block commands and (ii) the group of sequenced
block commands to a list of block commands to be executed
relative to the data store 48. As should be appreciated, the
original group of sequenced block commands is added to the
list of block commands if the analysis did not reveal a
meaningful space and/or time-speed benefit associated with
reordering the group of sequenced block commands.

In another embodiment, the data store system 20 may
comprise multiple data stores 48 and the journaling proces-
sor operates to analyze whether the reordering of block
commands for each data store 48 can achieve a data space
and/or time-speed benefit relative to the store 48. In another
embodiment, the data store system 20 comprises multiple
data stores 48 and the journaling processor operates to
analyze whether the reordering of block commands for a
subset of the multiple data stores 48 can achieve a data space
and/or time-speed benefit for each of the data stores 48 in the
subset.

For instance, in one embodiment, two commands in a
group of commands may be separated from one another by
several intervening commands, but these two commands
may be executed in less time if the group of commands
could be altered so that these two commands would be
executed such that one command executes immediately after
the other command. This could save time, for example, in
reducing the number and/or extent of a seek operation
required by a disk drive 56 to or from which data is to be
transferred.

While the reordering of commands may provide a benefit,
the reordering of commands in a group of commands may
also produce different results from the results that would be
obtained if the commands were executed in the original time
sequence order. For instance, if a group of commands
includes a write command that is followed by a read
command and both commands relate to the same logical
block of data, changing the order of the commands such that
the read command precedes the write command would likely
produce different results. To elaborate, if the commands are
executed in the original time sequence order, the execution
of the read command will result in the retrieval of the data
that was written in executing the write command. In the
reordered sequence, execution of the read command will
retrieve whatever data was established in the logical block
prior to the execution of the write command, which is likely
to be different from the data that execution of the write
command will establish in the logical block. As such, in
certain embodiments, the primary data storage system 28
may provide the ability to reorder the commands in a group
of commands to obtain a benefit associated with the reor-
dering while also providing the ability to obtain the same
results as if the commands were executed in the original
order. In one embodiment, the ability to reorder a group of
commands but obtain results as if the original order of the
commands was retained is facilitated using a metadata
structure. The extent of the metadata structure that is
employed can vary based upon an analysis of the group of
the commands potentially being reordered, or the like.

User Level. The user level 22 includes at least one user
computer that is capable of being used in a manner that
interacts with the primary data storage level 28. A user
computer is capable of requesting that: (a) data associated
with the user computer be sent to the primary data storage
level 28 for storage and (b) data stored in the primary data

US 9,423,978 B2

7

storage level 28 be retrieved and provided to the user
computer. At least one user computer associated with the
user level is a storage administrator computer 34 that
provides a storage administrator or system administrator
with the ability to define the manner in which the data
storage provided by the primary data storage level 28 is
utilized. As illustrated in FIG. 1, the user level 22 typically
includes a plurality of user computers with at least one of the
plurality of user computers being associated with a storage
administrator and the other user computers being associated
with other entities. For the purpose of illustration, the user
level 22 includes user computers 36A-36C respectively
associated with a customer support department, an account-
ing department, and an engineering department.

Initiator Level. The initiator level 24 includes at least one
initiator that operates to translate a request from a user
computer into one or more block command packets. A
request from a user computer is in the form of a request
packet that conforms to a packet protocol such as TCP, 1P,
Web, DB, and FileShare. A block command packet conforms
to a block protocol that includes block commands for data
storage devices that operate on one or more blocks of data.
Examples of block protocols are the Internet Small Com-
puter System Interface protocol (iSCSI), the Fiber Channel
protocol (FC), TCP, and IP. Examples of block commands
include: (a) a block write command that directs a data
storage device to write one or more blocks of data to storage
media associated with the device and (b) a block read
command that directs a data storage device to read one or
more blocks of data from a storage media associated with the
device. A block of data is a fixed and predetermined number
of contiguous bytes of data that is or will be resident on some
kind of storage media. Typical block sizes are 512, 1024,
2048, and 4096 bytes. For example, a request from a user
computer to read a large file of data resident at the primary
data storage level 28 is likely to be translated by an initiator
into multiple block command packets that each relate to one
or more blocks of data that is/are part of the requested file.

The initiator also operates to translate a block result
packet, a packet that is received by the initiator and provides
the result or a portion of the result of the execution of a block
command associated with a block command packet, into a
reply to request packet. The initiator provides the reply to the
request packet to the appropriate user computer.

As illustrated in FIG. 1, the initiator level 24 commonly
includes a plurality of initiators with each of the initiators
capable of: (a) processing request packets from each of the
user computers to generate block command packets and (b)
processing block result packets to produce reply to request
packets that are provided to the appropriate user computers.
For the purpose of illustration, the initiator level includes
initiators 38A-38C.

An initiator can be comprised of a cluster of two or more
computers that each endeavors to process a request from a
user computer and that provide redundancy in the event that
one or more of the computers fail. Typically, an initiator that
is designated to process high priority or critical requests is
comprised of multiple computers, thereby providing redun-
dancy should any one of the computers fail.

First Switch Level. The first switch level 26 provides the
ability for one or more user computers at the user level 22
to communicate with one or more initiators at the initiator
level 24. More specifically, the first switch level 26 operates
s0 as to receive a request packet from a user computer,
process the request packet to determine which initiator
should receive the request packet, and routes the request
packet to the appropriate initiator. Conversely, the first

10

15

20

25

30

35

40

45

50

55

60

8

switch level also operates to receive a reply to request packet
from the initiator level 24, process the reply to request
packet to determine which user computer should receive the
reply to request packet, and routes the reply to request
packet to the appropriate user computer.

The first switch level 26 can include a single switch that
connects one or more user computers to one or more
initiators or multiple switches that each connects one or
more user computers to one or more initiators. For the
purpose of illustration, the first switch level 26 includes a
switch 40 that is capable of establishing communication
paths between the user computers 34 and 36A-36C and the
initiators 38A-38C.

Primary Data Storage Level. The primary data storage
level 28 (or primary data storage system 28) operates to
receive a block command packet from an initiator, attempt
to execute the block command contained in the block
command packet, produce a block result packet that contains
the result of the attempted execution or execution of the
block command, and provide the block result packet to the
initiator that sent the related block command packet to the
primary data storage system 28.

Typical block commands include a write command and a
read command. In the case of a write command, the primary
data storage system 28 attempts to write one or more blocks
of data to a data store (sometimes referred to simply as a
“store”) associated with the primary data storage system 28.
With respect to a read command, the primary data storage
system 28 attempts to read one or more blocks of data from
a data store associated with the primary data storage system
28 and provide the read data to the initiator.

The primary data storage system 28 includes at least one
storage processor and at least one data store. The primary
data storage system 28 also includes at least one switch
when the at least one storage processor and the at least one
data store associated with the at least one storage processor
will accommodate two or more independent communication
paths between the at least one storage processor and the at
least one data store.

A storage processor includes an application memory and
a processor for executing code resident in the application
memory to process a block command packet. In one embodi-
ment, the processor and the application memory are embod-
ied in a SuperMicro Superserver 6036ST.

A data store is (a) a single data storage device or element
or (b) a combination of data storage devices or elements.
Examples of a single data storage element that can each be
a data store include a CPU bus memory, a disk drive with a
magnetic/optical disk, a solid state drive, and a tape drive
with a tape. An example of a combination of data storage
devices or elements that are configured to operate as a single
data store is a group of disk drives configured as a Redun-
dant Array of Independent Drives or RAID.

A data store can be characterized by the attributes of path
redundancy, data redundancy, and persistence.

The path redundancy attribute is a measure of the number
of redundant and independent paths that are available for
writing data to and/or reading data from a data store. As
such, the value of the path redundancy attribute is the
number of independent paths (e.g., the independent /O ports
associated with the data store) less one. The value of the path
redundancy attribute is one or greater when there are at least
two independent paths available for writing data to and/or
reading data from the data store. If there is only one
independent path available for writing data to and/or reading
from a data store, the path redundancy is zero.

US 9,423,978 B2

9

The data redundancy attribute is a measure of the number
of failures of elements in a data store that can be tolerated
without data loss. As such, the value of the data redundancy
attribute is the number of elements in the data store less the
number of elements that can fail before there is data loss. For
example, if a data store is comprised of two disk drives
(elements) with the data on one disk drive mirroring the data
on the other disk drive, the value of the data redundancy
attribute is one because the failure of one disk drive means
that the data can still be recovered but the failure of both disk
drives would mean that there would be data loss. As another
example, the value of the data redundancy attribute of a
RAID-6 data store comprised of six disk drives (elements)
is two because the two of the disk drives (elements) can fail
and the data can still be recovered but the failure of three or
more disk drives (elements) would preclude the recovery of
the data.

The persistence attribute is an indication of: (a) the
presence of data on a data store for a substantial period of
time without power being applied to the data store or (b) data
remaining on a data store for a substantial period of time due
to the presence of a primary power source and an indepen-
dent backup power source that operates in the event of the
failure of the primary power source. For example, if a data
store is a single magnetic disk drive, the persistence attribute
is “positive” because data will remain on the magnetic disk
drive for a substantial period of time in the absence of power
being applied to the drive. In contrast, a data store that is
volatile memory without battery backup has a persistence
attribute that is “negative” because data established in the
memory will not remain in the memory in the absence of
power being applied to the memory.

A data store also provides at least one of a number of
possible combinations of read and write operations, includ-
ing read-only, read and write, write-only, and write-once-
read-many (WORM).

The switch facilitates communications between each of
the storage processors or a subset of all of the storage
processors associated with the primary data storage level 28
and each port of all of the data stores associated with the
primary data storage system 28 or a subset thereof.

In many situations, redundancy that allows the primary
data storage system 28 to continue operation in the event of
a predetermined level of failure of a storage processor, an
element of a data store, and or a switch is desired. This
redundancy refers to path redundancy in which there are at
least two separate and independent paths extending at least
part of the way between an [/O interface of the primary data
storage system 28, the interface that initially receives a block
command packet from an initiator and from which a block
result packet is transmitted to an initiator, and a data store.

To provide one embodiment of path redundancy, the
primary data storage system 28 includes: (a) an 1/O interface
42 comprised of network cards 44A-44D, (b) first and
second storage processors 46A, 46B, (c¢) first and second
data store systems 48A, 48B, and (d) first and second
switches 50A, 50B. It should be appreciated that storage
processors 46A, 46B could each be a single processor or
multiple processors operating cohesively.

The network cards 44A-44D (sometimes referred to as
“Ethernet cards”) of the I/O interface 42 are each address-
able by one or more of whatever initiators are operative at
the initiator level 24. In the illustrated embodiment, each of
the network cards 44A-44D is an Ethernet card that is
appropriate for use when all of the initiators that are active
at the initiator level 24 are conducting communications with
the primary data storage system 28 pursuant to the Ethernet

10

15

20

25

30

35

40

45

50

55

60

65

10

protocol. Other cards can be employed if a different proto-
col, such as Fibre Channel, is used by the initiators.

The first and second data store systems 48A, 48B are each
comprised of a portion of a data store, a portion of each of
multiple data stores, a data store, multiple data stores, or
combinations thereof.

The first and second switches 50A, 50B each provide at
least a portion of the ability to connect (a) one or more of the
network cards 44A-44D to a selected one of the storage
processors 46 A, 46B, (b) first and second storage processors
46A, 46B to one another, and (c) a selected one of the
storage processors 46 A, 46B to a selected one of the first and
second data store systems 48A, 48B. The ability of switch
50A to establish a connection to a store in the data store
system 48B depends on the store having at least one of two
input/output ports available for establishing a connection
with the switch. Similarly, the ability of switch 50B to
establish a connection to a store in the data store system 48A
depends on the store having one or at least two input/output
ports available for establishing a connection with the switch.

The path redundancy that is provided by the embodiment
of the primary data storage system 28 shown in FIG. 1
contemplates the failure of: (a) one or more but less than all
of the Ethernet cards 44A-44D, (b) one of the first and
second storage processors 46A, 46B, (c) one of the first and
second switches 50A, 50B, and/or (d) a data store associated
with one of the first and second data store systems 48A, 48B.

To elaborate, partial path redundancy is provided by
rendering at least two of the network cards 44A-44D with
the same initiator. If one of the at least two Ethernet cards
fails, the other operative Ethernet card(s) provide(s) path
redundancy for the initiator.

Partial path redundancy is provided by the two storage
processors 46 A, 46B. If one of the first and second storage
processors 46 A, 46B fails, the other storage processor can be
utilized to provide the path redundancy between the 1/O
interface 42 and a data store. In this regard, the non-failing
storage processor may use one or both of the switches 50A,
50B. For example, if the storage processor 46A is exclu-
sively responsible for communications conducted over Eth-
ernet card 44A, storage processor 46A needs to process a
command propagated over Ethernet card 44A and associated
exclusively with the first data store system 48A, and storage
processor 46A fails, the storage processor 46B can utilize
both the first and second switches 50A, 50B to complete a
communication path between the Ethernet card 44 A and the
first data store system 48A, e.g., the storage processor 468
utilizes the first and second switches 50A, 50B to commu-
nicate with both the Ethernet card 44A and the first data store
system 48A.

Partial path redundancy is provided by the first and
second switches 50A, 50B. If one of the first and second
switches 50A, 50B fails, the other switch can be utilized to
provide the necessary path redundancy. This path redun-
dancy is dependent upon the non-failing switch having: (a)
access to a portion of the data store that provides data
redundancy relative to the portion of the data store that is no
longer accessible due to the failure of the other switch and
(b) access to an Ethernet card that can be addressed by the
same initiator as the Ethernet card(s) that is/are no longer
available due to the failure of the other switch. For example,
if Ethernet cards 44A and 44C are each addressable by the
same initiator, the data store systems 48A and 48B each
include an element that together define a data store in which
one element mirrors the other element, and switch 50A fails,
the switch 50B can be utilized to establish the necessary

US 9,423,978 B2

11

communication between the Ethernet card 44C and the
element in data store system 48B.

Additionally, in many situations, multiple data stores that
have different storage characteristics (e.g., speed, capacity,
redundancy and/or reliability) are desired. In this regard, the
first data store system 48A is comprised of: (a) a first data
store that is a first CPU bus memory 52A (sometimes
referred to as memory store 52A) and is relatively fast but
with relatively low capacity and no redundancy, (b) a second
data store that is a first solid state disk or drive (SSD) 54A
with less speed but greater capacity relative to the first CPU
bus memory 52A and no redundancy, and (c) a third data
store in the form of a first RAID disk array 56A with less
speed and greater capacity than the first solid state disk 54A
and redundancy. CPU bus memory is memory that is acces-
sible to a processor of a storage processor via the processor’s
address bus, available for use by the processor, useable by
the processor in processing a block command packet, and
does not contain any portion of the application program that
is executed or could be executed in the processing of a block
command packet. In contrast, the processor accesses the first
SSD 54 A and the first RAID disk array 56 A via an expansion
bus (e.g., PCle). Relatedly, stores having similar character-
istics are typically configured within a primary data storage
system so as to constitute a tier.

It should be appreciated that the first data store system
48A can be comprised of other combinations of partial data
stores and/or data stores. For instance, the first data store
system 48A could include a first disk drive and the second
data store system 48B could include a second disk drive, the
first and second disk drives together forming a data store in
which the first and second disk drives mirror one another to
provide data redundancy. In the illustrated embodiment, the
second data store system 48B includes data stores in the
forms of a second CPU bus memory 52B (sometimes
referred to as memory store 52B), a second SSD 54B, a
second RAID disk array 56B. It should be appreciated that
the second data store system 48B can also include other
combinations of data stores and partial data stores.

In a data store system that includes CPU bus memory and
non-CPU bus data storage, the switch that is used to estab-
lish connections between the processor of a storage proces-
sor and the data store system is comprised of a type A switch
that establishes connections with the non-CPU bus data
storage and a type B switch that establishes connections with
the CPU bus memory.

Because the first and second data store systems 48A, 48B
respectively include CPU bus memories 52A, 52B, the first
and second switches 50A, 50B respectively include type B
switches 60A, 60B that respectively allow the processors of
the storage processors 46 A, 46B to establish communication
paths with the CPU bus memories 52A, 52B. A type B
switch is comprised of the hardware, software, and/or firm-
ware associated with a storage processor that allow the
processor to access the memory locations on the CPU
memory bus associated with the CPU bus memory.

Further, because the first and second data store systems
48A, 48B respectively include non-CPU bus data storage in
the form of SSD and SAS devices, the first and second
switches 50A, 50B respectively include type A switches
58A, 58B that respectively allow the processors of the
storage processors 46A, 46B to establish communication
paths with the non-CPU bus data stores. A type A switch is
comprised of the hardware, software, and/or firmware asso-
ciated with an expansion bus that allows the processor to
access the data on the non-CPU bus data storages. In certain
embodiments, the primary data storage system 28, the one or

10

15

20

25

30

35

40

45

50

55

60

65

12

more data stores 48, or the like comprise a storage appliance
(e.g., a network storage appliance, a storage area network
(SAN) storage appliance, network-attached storage (NAS),
or the like). A storage appliance, as used herein, comprises
a specialized computing device configured to provide access
to a data store 48 over a network or fabric, with or without
a dedicated host device.

Second Switch Level. The second switch level 30 pro-
vides the ability for each of the initiators associated with the
initiator level 24 to communicate with at least one network
card associated with the primary data storage system 28, the
at least one network card being associated with at least one
storage processor of the primary data storage system 28.
More specifically, the second switch level 30 operates to
receive a block command packet from an initiator and
process the block command packet so as to route the packet
to the address that is associated with a particular network
card. Conversely, the second switch level 30 also operates to
receive a block result packet from the primary data storage
system 28 and process the block result packet so as to route
the packet to the appropriate initiator.

The second switch level 30 can include a single switch
that selectively connects one or more initiators to one or
more network cards or multiple switches that each selec-
tively connects one or more initiators to one or more
network cards. For the purpose of illustration, the second
switch level 30 includes switch 61 that is capable of selec-
tively establishing a communication path between each of
the initiators 38A-38C and each of the network cards
44A-44D.

Secondary Data Storage Level. The secondary data stor-
age level 32 provides secondary storage of data, e.g., storage
that is not constantly available for use by one or more user
computers when the system 20 is in a normal/acceptable
operating mode. In contrast, primary data storage is sub-
stantially constantly available for use by one or more user
computers when the system 20 is in a normal/acceptable
operating mode. The secondary data storage level 32 can
include many different types of data storage, including tape
drives, robotic data storage systems that employ robots to
move storage media between players/recorders and storage
locations, “cloud” storage etc. It should be appreciated that
these types of data storage and other types of data storage
that are largely used as secondary data storage can, in
appropriate circumstances, become primary storage.

The secondary data storage level 32 includes a backup/
tape server 62 that communicates with one or more of the
initiators at the initiator level 24 in response to a request
packet issued by a user computer at the user level 22.

The secondary data storage level 32 also includes a cloud
storage provider 64 that is accessible to the primary data
storage system 28. In the illustrated embodiment, the cloud
storage provider 64 can be a part of a data store, part of
multiple data stores, a data store, multiple data stores, or
combinations thereof that is respectively accessible to the
storage processors 46A, 46B via network cards 66A, 66B
(which are Ethernet cards in the illustrated embodiment) and
the type A switches 58A, 58B respectively associated with
switches 50A, 50B.

System Administrator Communication Path. The system
administrator computer 34 communicates with the primary
data storage system 28 and, more specifically, the storage
processor(s) in the primary data storage system 28 to define
the manner in which the data storage provided by the
primary data storage system 28 can be utilized. The com-
munication path between the system administrator computer
34 and a storage processor in the primary data storage

US 9,423,978 B2

13

system 28 is from the system administrator computer 34 to
the switch 40 and from the switch 40 to a network card. The
network card and the storage processor can be connected to
one another via the switch in the primary data storage system
28 that services the network cards associated with the
initiators.

In the illustrated embodiment, the system administrator
computer 34 respectively communicates with the storage
processors 46A, 46B via network cards 68A, 68B and
switches 50A, 50B.

It should be appreciated that the administrator computer
34 can also communicate with the storage processors 46A,
46B via one or more paths that include the first switch level
26, the initiator level 24, and the second switch level 30.
Primary Data Storage Level Communications

The primary data storage system 28 receives and pro-
cesses two types of communications. The first type of
communications is administrator command packets related
communications. Administrator command packets are pro-
cessed using a management stack. The second type of
communications is block command packets that relate to the
writing of data to a data store or the reading of data from a
data store. Block command packets are processed using an
10 stack.

With reference to FIG. 2, the administrator command
packets are processed using a management stack 100. There
is a management stack 100 associated with each storage
processor at the primary data storage system 28. The man-
agement stack 100 is embodied in software that is executed
by the storage processor. Generally, the management stack
100 operates to receive an administrator command packet
that relates to the primary data storage system 28, processes
the administrator command packet, and provides a reply
packet, if appropriate. The receiving, processing, and reply-
ing of an administrator command packet by the management
stack 100 involves interaction with other software elements
and hardware elements within the primary data storage
system 28. Among the software elements with which the
management stack interacts are: an 10 stack and, if there is
another storage processor, a fail-over manager and a second
management stack. An example of a hardware element that
interacts with the management stack 100 is a network card.
In addition, the management stack 100 operates to conduct
communications with any other storage processors at the
primary data storage system 28.

With continuing reference to FIG. 2, the block command
packets are processed by an 1O stack 102. An IO stack 102
is associated with each storage processor at the primary data
storage system 28. Generally, the 10 stack 102 operates to
receive a block command packet that relates to the primary
data storage system 28, processes the block command
packet, and provides a result packet if appropriate. The
process of receiving, processing, and replying of a block
command packet by the 10 stack 102 involves interaction
with other software elements and hardware elements within
the primary data storage system 28. Among the software
elements with which the IO stack 102 interacts are: the
management stack 100 and, if there is another storage
processor, the fail-over manager associated with the other
storage processor. An example of a hardware element that
interacts with the 10 stack 102 is a network card.

The 1O stack 102 also communicates with a fail-over
manager 104. If there is more than one storage processor at
the primary data storage level 28, there is a fail-over
manager 104 associated with each storage processor. Gen-
erally, the fail-over manager 104 operates to: (a) initiate a
request from the “home” storage processor (e.g., the storage

10

15

25

30

40

45

50

55

14

processor with which the fail-over manager is associated) to
a “foreign” storage processor (e.g., a storage processor other
than the “home” storage processor) to transfer responsibility
for a logical unit number (LUN) or volume to the “foreign”
storage processor and (b) facilitate the processing of a
request from a “foreign” storage processor to transfer
responsibility for a volume to the “home” storage processor.
A volume, as used herein, may comprise a logical or
physical unit or grouping of storage, memory, and/or data. A
LUN or volume may be a logical or physical unit of storage
within the data store(s) 48 provided by the primary data
storage system 28. A volume may comprise a portion of a
data store 48; a portion of each of multiple data stores 48A,
48B; a data store 48; multiple data stores 48A, 48B; or
combinations thereof. A volume may comprise a storage
volume, a logical volume, a physical volume, or another
logical or physical container for data.

Management Stack

The management stack 100 operates to: (a) receive an
administrator command packet (b) communicate with the
block processing stack to the extent necessary to process an
administrator command packet, and (c) transmit a reply
packet directed to the administrator computer 34 to the
extent the processing of an administrator command packet
requires a reply. Examples of administrator command pack-
ets include packets that relate to the creation of a LUN/
volume within the primary data storage system 28, the
assignment of Quality-of-Service (QoS) goals for a LUN/
volume, the association of a LUN/volume with an initiator,
the configuration of a network card (e.g., the assigning of an
address to the Ethernet card so that the card is available to
one or more initiators), requesting of data/information on the
operation of a LUN/volume, the destruction of a LUN, and
maintenance operations.

The management stack 100 conducts communications
with the 1O stack 102 that relate to a volume(s) for which the
10 stack 102 is responsible. Among the communications
with the IO stack 102 are communications that involve the
creation of a volume, the assignment of QoS goals to a
volume, the association of a volume with an initiator, the
configuration of an network card, the acquisition of data/
information relating to a volume or volumes for which the
10 stack 102 is responsible, and the destruction of a volume.

The management stack 100 is also capable of communi-
cating with a fail-over manager 104 via the 1O stack 102. For
example, if an administrator wants to temporarily disable the
10 stack 102 to update the IO stack 102 but does not want
to disable one or more of the volumes for which the 10 stack
102 is responsible, an administrator command packet can be
issued to implement an administrator fail-over in which the
management stack 100 communicates with the fail-over
manager 104 via the 10 stack 102 to transfer responsibility
for the relevant volumes to another storage processor in the
primary data storage system 28.

The management stack 100 is also capable of communi-
cating with the management stacks associated with other
storage processors at the primary data storage system 28 to
facilitate coordination between the storage processors. For
example, the management stack 100 communicates volume
creation/destruction, changes in QoS for a volume, network
card address changes, administrator identification and pass-
word changes, and the like to the management stacks
associated with other storage processors in the system.

The management stack 100 is comprised of: (a) an
Ethernet hardware driver 108, a TCP/IP protocol processor
110, a Web protocol processor 112 and/or a Telnet protocol
processor 114, a JavaScript Object Notation (JSON) or

US 9,423,978 B2

15

Jason parser 116, a Filesystem in Userspace (FUSE) 118, a
management server 120, and a management database 122.

The Ethernet hardware driver 108 controls an Ethernet
card so as to produce the electrical signals needed to receive
a message, such as an administrator command packet, and
transmit a message, such as reply packet. The TCP/IP
protocol processor 110 at the TCP level manages the reas-
sembly (if needed) of two or more packets received by an
Ethernet card into the original message (e.g., an adminis-
trator command packet) and the disassembly (if needed) of
a message into two or more packets for transmission (e.g.,
a reply to an administrator command).

The TCP/IP protocol processor 110 at the IP level assures
the addressing of packets associated with a message. With
respect to received packets, the IP level confirms that each
of'the received packets does, in fact, belong to the IP address
associated with the Ethernet card. With respect to packets
that are to be transmitted, the IP level assures that the each
packet is appropriately addressed so that the packet gets to
the desired destination. With respect to a received message,
the TCP level also recognizes the packet as requiring further
routing through the management stack 100, e.g., to the Web
protocol processor 112 or Telnet protocol processor 114. The
TCP/IP protocol processor 110 also performs other process-
ing in accordance with the protocols, e.g., ordering packets,
checksum etc.

The Web protocol processor 112 is used when the admin-
istrator computer 34 is employing a browser to interact with
the management stack of the primary data storage system 28.
The Web protocol processor 112 includes a Hyper Text
Transport Protocol (HTTP) daemon that receives a message
(e.g., an administrator command packet) and processes the
message by passing the message on to the JSON parser 116.
Subsequently, the daemon is informed by the JSON parser
116 of any reply to the message and passes the reply (Web
pages etc.) on up to the TCP/IP protocol processor 110 for
further processing.

As an alternative to the Web protocol processor 112, a
Telnet protocol processor 114 can be utilized. The Telnet
protocol processor 114 includes a daemon that receives a
message (e.g., an administrator command packet) and pro-
cesses the message by passing the message on to the JSON
parser 116. Subsequently, the daemon is informed by the
JSON parser 116 of any reply to the message and passes the
reply on up to the TCP/IP protocol processor 110 for further
processing.

The JSON parser 116 serves as a translator between the
Web protocol processor 112 (and Telnet protocol processor
114 or most other similar types of protocol processors) and
the FUSE 118 and management server 120. More specifi-
cally, the JSON parser 116 operates to translate between
“Web language” and JSON language. Consequently, the
Jason parser 116 translates an administrator command
packet received from the Web protocol processor 112 into
JSON language. Conversely, the Jason parser 116 translates
a reply to an administrator command from JSON language
into Web language for passing back up the management
stack. The translation of “Web language” into JSON lan-
guage produces a file call, e.g., a request relating to a
particular file.

The FUSE 118 is a loadable kernel module for Unix-like
operating systems that allows the creation of a file system in
a userspace program. The FUSE 118 serves as an application
program interface (API) to the file system in the manage-
ment server 120, a portion of the userspace program. More
specifically, the FUSE 118 operates to receive a file call from
the JSON parser 116, convey the file call to the management

40

45

55

60

16

server 120, receive any reply to the file call generated by the
management server 120, and convey any reply to the JSON
parser 116 for further conveyance up the management stack.
The context of the file call indicates the file within the
management server that is to be executed, e.g., a volume
creation or a volume destruction.

The management server 120 operates to: (a) receive a file
call from the FUSE 118 that is representative of an admin-
istrator command embodied in an administrator command
packet, (b) execute the file that is the subject of the file call,
and (¢) communicate the result of the executed file to the
FUSE 118 for further conveyance up the management stack,
typically this results in the administrator computer 34 being
provided with a new or updated Web page with an update as
to the status of the execution of the administrator command,
e.g., the command executed or the command failed to
execute.

The file that is the subject of the file call can result in the
management server 120 communicating with the 10 stack
102, the fail-over manager 104, the management database
122, and/or another storage processor. For example, if the
goal of the file to be executed is the creation of a volume, in
executing the file, the management server 120 will commu-
nicate with the IO stack 102, the fail-over manager 104, the
management database 122, and other storage processors. As
another example, if the goal of the file to be executed is to
provide the administrator computer 34 with statistics relat-
ing to a particular volume, in executing the relevant file, the
management server 120 will communicate with the 1O stack
102 to obtain the necessary statistics on the particular
volume.

The management server 120, in addition to processing
administrator command packets that propagate down the
management stack, also processes commands or requests for
information from management servers associated with other
storage processors. For instance, a “foreign” management
server that is associated with a different storage processor
than the management server 120 may have processed an
administrator command packet setting forth a new admin-
istrator id/password. The foreign management server would
update its management database and forward a command to
the management server 120 to update the management
database 122 with the new administrator id/password.

The management database 122 has three portions: (a) a
local object portion to which only the management server
120 can read/write, (b) a shared object portion to which the
management server 120 can read/write but can only be read
by another management server, and (c) a shared object to
which the management server 120 can read/write and to
which another management server can read/write. An
example of a shared object to which the management server
120 can read/write but that can only be read by another
management server is information that is specific to the
storage processor with which the management server 120 is
associated, e.g., CPU usage or CPU temperature. An
example of a shared object to which both the management
server 120 and another management server can read/write is
an administrator id/password.

10 STACK

FIG. 2 illustrates the 1O stack 102, e.g., a group of
processes that are executed by each storage processor asso-
ciated with the primary storage level 28 in processing a
block command packet relating to a particular block of data
or multiple blocks of contiguous data.

Generally, the 10 stack 102 is comprised of network
protocol processors 130 (sometimes referred to as “network
processors”) that conduct the processing needed to conduct

US 9,423,978 B2

17

communications with other elements in a computer network
according to various network protocols and a filter stack 132
that process block commands so as to read data from and
write data to a data store associated with the primary data
storage system 28.

Network Protocol Processors.

iSCSI. A SCSI block command can be conveyed to the
primary data storage system 28 over an Ethernet and accord-
ing to Internet protocols, e.g., according to iSCSI protocols.
The SCSI block command is embedded in a block command
packet that conforms to the iSCSI protocols. In such a
situation, the network protocol processors 130 includes the
Ethernet hardware driver 108, the TCP/IP protocol processor
110, and an iSCSI protocol processor 140 for processing the
block command packet with the SCSI block command.
Generally, the Ethernet hardware driver 108 and the TCP/IP
protocol processor 110 operate as previously described with
respect to the management stack 100. In this instance,
however, the TCP layer of the TCP/IP protocol processor
110 recognizes that the received packet as a block command
packet and not an administrator command packet. Moreover,
the TCP layer recognizes the block command packet as
having an iSCSI block command. As such, the block com-
mand packet is routed by the TCP/IP protocol processor 110
to the iSCSI protocol processor 140 for further processing.
The iSCSI protocol processor 140 operates to assure that the
iSCSI portion of a received block command is in confor-
mance with the iSCSI standard. If the iSCSI portion of a
block command packet is in conformance, the block com-
mand is passed on to the filter stack 132. The Ethernet
hardware driver 108, TCP/IP protocol processor 110, iSCSI
protocol processor 140, also process any result packet (e.g.,
a packet that conveys the result of the execution of a SCSI
block command or failure to execute a SCSI block com-
mand) for forwarding to the initiator that originated the
block command packet.

FibreChannel. A SCSI block command can also be con-
veyed over a Fibre Channel (FC) network and according to
Fibre Channel protocols. The SCSI block command is
embedded in a block command packet that conforms to the
FC protocol. In such a situation, the network protocol
processors 130 include a FC hardware driver 150 and a FC
protocol processor 152. The FC hardware driver 150 oper-
ates to control a Fibre Channel card (which replaces the
Ethernet card, e.g., Ethernet cards 44A-44D) so as to pro-
duce the electrical signals needed to receive a block com-
mand packet that conforms to the FC protocols and transmit
a result packet to the initiator that originated a block
command packet. The FC protocol processor 152 (a) man-
ages the reassembly (if needed) of two or more packets
received by a Fibre Channel card into the original block
command packet and the disassembly (if needed) of a result
packet into two or more packets for transmission, and (b)
assures the addressing of packets associated with a received
block command packet and associated with a reply packet.

Fibre Channel over Ethernet (FCoE). A SCSI block com-
mand can also be conveyed over an Ethernet and according
to Fibre Channel protocols. The SCSI block command is
embedded in a block command packet that conforms to the
Ethernet and FC protocol. In such a situation, the network
processors 130 include the Ethernet hardware driver 108 and
the FC protocol processor 152.

It should be appreciated that the primary data storage
system 28 operates to process block commands, e.g., com-
mands that relate to the reading of a block data from or
writing of a block data to a storage medium. As such, the

10

15

20

25

30

35

40

45

50

55

60

65

18

primary data storage system 28 can be adapted to operate
with block commands other that SCSI commands.

Further, the primary data storage system 28 can be
adapted to process block commands regardless of the type of
network used to convey the block command to the primary
data storage system 28 or to transmit the reply to a block
command from the primary data storage system 28. As such,
the primary data storage system 28 can be adapted to operate
with networks other than Ethernet and FC networks.

Moreover, the primary data storage system 28 can be
adapted to operate on block commands that are conveyed
over a network according to protocols other than Ethernet,
TCP/IP or FC.

Filter Stack.

The filter stack 132 is comprised of a target driver filter
160, a group of foreground filters 162, and a group of
background filters 164. Associated with the filter stack 132
are a filter manager 166 and a statistics database 168.
Operations that involve executing or attempting to execute
a SCSI block command flow “down” the stack, e.g. in the
direction going from the target driver filter 160 and toward
the group of background filters 164. In contrast, operations
that involve generating or providing the result of the execu-
tion or attempted execution of a SCSI block command flow
“up” the stack. Consequently, a filter involved in executing
or attempting to execute a SCSI block command may also be
involved in generating or providing the result of the execu-
tion or attempted execution of the SCSI block command.

Generally, the target driver filter 160 processes block
command packet to generate an input/output block (IOB)
that is used by the other filters to store data/metadata relating
to the processing of a block command. As such, the IOB
facilitates the communication of data/metadata between
filters. The IOB that is initially generated by the target driver
filter 160 flows down the filter stack 132 and is on occasion
referred to as command IOB. After there is a result relating
to a SCSI block command associated with an (execution or
failure to execute), the IOB flows up the stack and is on
occasion referred to as a result IOB. The target driver filter
160 also operates to generate a result packet from a received
result IOB and passes the result packet on up the stack to the
network processors 130.

Generally, the group of foreground filters 162 process a
command IOB to: (a) cause whatever write/read related
operation is required of a block command to occur and (b)
cause one or more tasks needed to accomplish the read/write
operation to occur in a fashion that endeavors to meet QoS
goals. The foreground filters 162 also process a result IOB
as needed and provide the result IOB to the target driver
filter 160.

Generally, the group of background filters 164 cause one
or more tasks related to administrator defined QoS goals to
occur and that, if performed in the foreground process,
would significantly impact the ability to meet QoS goals.

Generally, the filter manager 166 operates to create (asso-
ciate) the filter stack 132 with a volume (an identifiable unit
of data storage), destroy (disassociate) a volume from the
filter stack 132, and cooperates with the fail-over manager
104 and/or management server 120 to implement various
volume related functions (e.g., using the management server
120 to inform “foreign” storage processors of the creation of
a new volume).

The statistics database 168 receives statistical data relat-
ing to a volume from one or more filters in the filter stack
132, stores the statistical data, consolidates statistical data
based upon data provided by a filter, stores calculated

US 9,423,978 B2

19

statistical data, and provides the stored statistical data to one
or more filters in the filter stack 132 and to the management
server 120.

Generally, the filter manager 166 operates to create (asso-
ciate) the filter stack 132 with a volume (an identifiable unit
of data storage), destroy (disassociate) a volume from the
filter stack 132, and cooperates with the fail-over manager
104 and/or management server 120 to implement various
volume related functions (e.g., using the management server
120 to inform “foreign™ storage processors of the creation of
a new volume). To elaborate with respect to the creation of
a volume, the filter manager 166 receives a message from
the Management Server 120 instructing filter manager 166
to create a new volume with a specific filter stack configu-
ration. The filter manager 166 instantiates the filters and
places them in the correct hierarchy based on the storage
administrator request. For example, with respect to FIG. 2,
the filter manager creates an instance of target driver 160 and
10 forward filter 270 and ensures that target driver 160 sends
IOBs “down” the stack to the 10 Forward filter 270. Simi-
larly, filter manager 166 creates, configures, and connects
the rest of the filter stack 132. To elaborate with respect to
the deletion of a volume, the filter manager 166 unlinks the
connections and removes each of the filters in the stack.

Statistics Database. The statistics database 168 receives
data from various hardware and software elements within
the system and provides data to many of the elements within
the system that use the data in making one or more decisions
relating to a data storage operation. Due to the extensive use
of the statistics database 168 throughout the system, a
description of the database 168 is provided prior to the
descriptions of the various 10 filters, many of which make
use of the database. Initially, it should be appreciated that the
structure of the statistics database 168 can vary based upon
the hardware and software elements present in the system.
Further, the statistics database can store data that is derived
from data provided by a single element or from data pro-
vided by multiple elements. Consequently, the statistics
database 168 can be quite extensive.

With reference to FIG. 2A, an example of a portion of a
statistics database 258 is described to facilitate the under-
standing of the use of the database 168 by various filters.
With respect to the example of a portion of the statistics
database 258, it should be appreciated that a portion of the
database relates to hardware. In this case, the portion that
relates to hardware includes statistics relating to a CPU, a
Solid-State Disk (SSD), and an Ethernet card. A portion of
the example of a portion of the statistics database 258 relates
to volume related data. In this case, the portion that relates
to volume data includes statistics directed to three different
criticalities, a volume, and an initiator. With respect to both
the hardware and volume statistics, statistic relating to
throughput, queue depth, latency, and use count are pro-
vided. The use count with the “second” resolution corre-
sponds to IOPS. The use count with respect to resolutions of
greater duration are IOPS scaled to the resolutions of the
greater duration. Additionally, with respect to each of
throughput, queue depth, latency, and use count, statistics
are provided in terms of both reads and writes. Further, it
should be appreciated that the example of a portion of a
statistics data includes current statistical data and historical
statistical data. The current statistical data has a resolution of
“second.” The historical statistical data has resolutions great
than “second” and include resolutions of “minute”, “hour”,
and “day”. It should be appreciated that only one resolution
of current statistical data and one resolution of historical
statistical data can be utilized, provided the resolution asso-

10

15

20

25

30

35

40

45

50

55

60

65

20

ciated with the historical statistical data is for a greater
period of time than the resolution associated with the current
statistical data. It should also be appreciated that resolutions
other than those shown can be utilized. It should also be
appreciated that a more complete example of the statistics
database would likely include statistical data relating to
additional volumes and additional hardware components
(e.g. SAS, additional CPUs, etc).

Target Driver Filter. The operation of the target driver
filter 160 is described with respect to the processing of a type
of'block command packet, known as an iSCSI encapsulation
packet 180 (sometimes referred to as “command packet”)
that includes a SCSI command, to generate an OB 182. To
elaborate, the command packet 180 is a packet that encap-
sulates a SCSI block command and other information, is
received at one of the Ethernet cards 44A-44D, and pro-
cessed by the Ethernet hardware driver 108, TCP/IP protocol
processor 110, and iSCSI protocol processor 140 prior to
being provided to the target driver filter 160. It should be
appreciated that the target driver filter 160 can be adapted to
operate with block commands other than SCSI block com-
mands, networks other than the Ethernet, and network
protocols other than TCP/IP.

The IOB 182 is a data structure that stores data/metadata
associated with the processing of the SCSI block command.
More specifically, the IOB 182 provides multiple fields for
holding data/metadata relating to the processing of the SCSI
block command. The target driver filter 160 builds the IOB
182 and populates certain fields of the IOB with data/
metadata from the command packet 180. The IOB 182 is
then provided to each of the other filters in the filter stack
132 that is involved in the executing or attempting to execute
the SCSI command (e.g., going down the stack). Each of
these other filters can, if needed, read data/metadata from
one or more fields in the IOB 182 and, if needed, write
data/metadata to one or more fields in the IOB 182. After the
SCSI command is executed (e.g., data is written to or read
from a data store) or fails to execute, the IOB 182 is then
provided to each of the filters in the filter stack 132 that is
involved in providing the result of the of the processing of
the SCSI command (e.g., going up the stack). Ultimately, the
1OB 182 is provided to the target driver filter 160 which uses
the IOB 182 to create an iSCSI encapsulation packet that
includes the result of the processing of the SCSI command,
e.g., aresult packet. The result packet is then provided to the
network processors 130 for additional processing and trans-
mission of the results packet towards the initiator that
originated the command packet.

iSCSI Encapsulation Packet with SCSI Command. The
command packet 180 is comprised of an Ethernet field 184,
an IP field 186, a TCP field 188, and an iSCSI field 190. The
iSCSI field 190 is, in turn, comprised of a basic header
segment 192, an additional header segment 194, a header
digest 196, a data segment 198, and a data digest 200. The
basic header segment is comprised of an Opcode field 202,
a DataSeglen field 204, a LUN field 206, and a SCSI
command data block 208. The data digest 200 includes a
data cyclic-redundancy-check (CRC) field 210.

10OB. The I0B 182 is comprised of an Initiator 1D field
220, a VolID field 222, a PageMode field 224, an LBA/
PageNum field 226, a SectorCount/PageOffset field 228, a
Command field 230, an ErrorCode 232 field, an ErrorOffset
field 234, a NumberOtfDataSegments field 236, DataSeg-
mentVector field 238, a DataCRCVector field 240, a Layerld
field 242, a QoS attributes field 244, a StorelD field 246, a
Store[.LBA field 248, an In Time Stamp field 250, an Issuer
stack field 252, and an XtraContext field 254. The QoS

US 9,423,978 B2

21

attributes field 244 is comprised of a criticality field 260A,
AllowedStores field 260B, AllowedLatency 260C, Project-
edlmpact 260D, and ImpactArray 260E. The Impact Array
260F includes impacts for each of the physical components
of the primary data storage system (e.g., CPU, memory,
SAS, SSD, and Ethernet) and the software components (e.g.,
volume, criticality, and initiator). It should be appreciated
that the AllowedLatency 260C and the InTimeStamp 250 are
used in a “headroom” evaluation (e.g., an evaluation as to
the amount of time available to perform an operation) in
such a way that as filters higher in the stack consume time
operating on an IOB, the filters lower in the stack have less
“headroom” to operate on the IOB.

After the target driver filter 160 receives the command
packet 180, the target driver filter 160 builds the IOB 182
and populates certain fields of the IOB 182 with values from
or derived from the command packet 180. It should be
appreciated that a value associated with a field is sometimes
referred to simply by the field name.

Specifically, the target driver filter 160 uses data/metadata
in the TCP field 188 of the command packet 180 to lookup
the value in a TCP session table associated with an earlier
login phase for the Initiator ID field 220 of the IOB 182.

The target driver filter 160 uses data/metadata in the LUN
field 206 of the command packet 180 to derive a value for
the VolID field 222 of the IOB 182, e.g., the volume within
the primary data storage system 28 to which the SCSI block
command relates. The value in the VolID field 220 reflects
the priority (e.g., mission critical, business critical, non-
critical) that the administrator has associated with the data
blocks that are associated with volume.

If the value in the PageMode field 224 is not automatically
established as “off” when the IOB 182 is first established,
the target driver filter 160 sets the value of the PageMode
field 224 to “off” to indicate that the IOB 182 initially relates
to a block or blocks of data within a volume and not to a
block or blocks of data within a page, a larger unit of
memory than a block. Moreover, the “off” value in the
PageMode field 224 also indicates that the values estab-
lished or to be established in the LBA/PageNum field 226
and SectorCount/PageOffset field 228 are LBA and Sector-
Count values and not PageNum and PageOffset values.

The target driver filter 160 uses data/metadata in the SCSI
Command Data Block field 208 to populate the command
field 230 with the SCSI command (e.g., a block read
command or a block write command), the LBA/PageNum
field 226 with the address of the first logical block address
within the volume to which the SCSI command relates, and
the SectorCount/PageOffset field 228 with the number of
sectors (or blocks) beginning at the specified LBA to which
the SCSI command relates. Sometimes a block read com-
mand is referred to as a read block command. Similarly,
sometimes a block write command is referred to as a write
block command.

If the values of the ErrorCode field 232 and ErrorOffset
field 234 are not automatically set to “null” or irrelevant
values when the IOB 182 is first established, the target driver
filter 160 establishes such values in these fields. The Error-
Code field 232 holds an error code value that is subsequently
established by a filter in the filter stack 132 and indicative of
a type of error encountered in the processing of the SCSI
command or in the returning of the result of the processing
of the SCSI command. The ErrorOffset 234 field holds an
offset value that further defines the type of error identified in
the ErrorCode field 232.

If the SCSI command is a write command, the target
driver filter 160 uses the data segment field 198 to establish

20

25

35

40

45

65

22

values in the NumberOfDataSegments field 236 and the
DataSegmentVector field 238. To elaborate, in the case of a
write command, the target driver filter 160 places the data
(sometimes referred to as “write data”) in the Data Segment
field 198 into memory (e.g., memory store 52A or 52B). In
placing the data in the Data Segment field 198 into memory,
the data from the Data Segment field 198 may be broken into
two or more non-contiguous segments. The target driver
filter 160 places the number of data segments that are
established in memory in the Numb erOfDataSegments field
236 and the address and length of each of the segments
established in memory in the DataSegmentVector field 238.
If there is more than one segment established in memory, the
target driver filter 160 calculates a cyclic redundancy check
(CRC) or possibly another form of hash for each of the
segments and places each of the CRC values in the
DataCRCVector field 240. If there is only one segment
established in memory (e.g., all of the data in the Data
Segment field 198 was copied into a single segment in
memory), the target driver filter 160 copies the value that is
in the Data CRC field 210 to the DataCRCVector field 240.
It should be appreciated that a data verification techniques
other that CRC can be employed in place of CRC.

After the DataCRCVector field 240 has been populated,
the target driver filter 160 calculates a CRC on the data in the
Data Segment 198 and compares the calculated CRC to the
CRC value (if present) in the Data CRC field 210. If there
is a difference between the calculated CRC and the CRC in
the field 210, then the data in the Data Segment 198 has
somehow been corrupted. In this case, the processing of the
SCSI command is aborted and the target driver filter 160
prepares a result packet indicating that the command failed
to execute. The result packet is passed on to the network
processors 130 for processing and transmission to the ini-
tiator.

Ifthe SCSI command is a read command, the target driver
filter 160 populates the NumberOfDataSegments field 236,
the DataSegmentVector field 238, and the DataCRCVector
fields with “null” or irrelevant values. When a filter that is
capable of satisfying the read, the filter will place the data
(sometimes referred to as “read data”) into memory (e.g.,
memory store 52A or 52B) and populates the NumberOf-
DataSegments field 236 and the DataSegmentVector field
238 with the count and address of the read data blocks in
memory.

Ifthe values of the LayerID field 242, QoS Attributes field
244, StorelD field 246, StoreL.BA field 248, IssuerStack
field 252, and XtraContextStack field 254 are not automati-
cally set to “null” or irrelevant values when the IOB 182 is
first established, the target driver filter 160 establishes such
values in these fields.

The target driver filter 160 places an “In” time in In Time
Stamp field 250 that reflects the point in time when or about
when the target driver filter 160 passes the IOB 182 to the
next filter in the filter stack 132.

The IssuerStack field 252 is used by a filter in the filter
stack 132 that is operating on a command OB (e.g., when
the flow of the IOB is down the filter stack 132) to indicate
that the filter needs to do additional processing when the
result IOB is propagating up the stack (e.g., when a result of
the execution of the SCSI command or failure to execute the
SCSI is being prepared). The XtraContextStack field 254 is
a field that a filter can use to store additional context
information when the filter has indicated in the IssuerStack
field 252 that the filter needs to do additional processing
when the IOB is propagating up the stack. Because several
filters can indicate a need to do additional processing when

US 9,423,978 B2

23

aresult IOB is propagating up the stack, the IssuerStack field
252 has a stack structure in which each filter that needs to do
additional processing “pushes” down an indication of the
need to do additional processing onto the “stack.” As a result
1OB propagates up the stack, a filter that “pushed” down an
indication of a need to do additional processing “pops” off
or removes the indication from the IssuerStack field 252
after the additional processing of the IOB is completed by
the filter. The XtraContext Stack field 254 also has a
push/pop structure that functions in a substantially similar
way to the IssuerStack field 252.

Once the building of the IOB 182 is complete and no
errors were encountered in the building of the IOB 182 that
caused the processing of the SCSI command to be aborted,
the target driver filter 160 (@) communicates with the sta-
tistics database 168 so as to cause a “pending IOB” statistic
to be incremented, (b) populates the IssuerStack field 252
and XtraContextStack 254 fields as needed.

Later, when a result IOB 182 is propagating up the filter
stack 132 and reaches the target driver filter 160, the current
time is obtained, the “In” time stored in the In Time Stamp
field 250 is obtained, and the total latency associated with
the processing of the IOB is calculated, e.g., the elapsed time
between when the “In” time value was obtained by the target
driver filter 160 and the when the current time was obtained.
The target driver filter 160 updates initiator and volume
tables in the statistics database 168 with the total latency
value. It should be appreciated that other tables or statistics
in the statistics database 168 may also be updated. Addi-
tionally, the target driver 160 builds the result packet and
provides the result packet to the network processors 130 for
further processing and communication to the initiator.
Foreground Filters

The foreground filters 162 include an I/O forward filter
270, a layer map filter 272, a quality-of-service (QoS) filter
274, statistics collection filter 276, a pattern deduplication
filter 278, a dictionary de-duplication filter 280, and an /O
journal filter 282.

/O Forward Filter. An initiator can send a command
packet to the primary data storage system 28 that relates to
a volume for which the storage processor that initially starts
processing the IOB relating to the command packet is not
responsible. The 1/O forward filter 270 operates to identify
this situation and forward the IOB to the storage processor
that is responsible for the volume.

By way of background, when an administrator computer
34 communicates with one of the storage processors 46A,
46B via the management stack 100 to request the creation of
a volume, the filter manager 166 associated with the storage
processor creates the volume and updates a volume owner-
ship table to indicate that the particular storage processor
and no other storage processor in the primary data storage
system 28 is responsible for the volume. With reference to
FIG. 4, an example of a volume ownership table 286 is
illustrated. Additionally, the filter manager 166 indicates to
the fail-over manager 104 that the volume ownership table
has changed. In response, the fail-over manager 104 com-
municates that there has been a change in the volume
ownership table to the fail-over manager associated with
each of the other storage processors in the primary data
storage system 28. There are a number of other situations
that cause a change in the volume ownership table and the
change to be communicated to the other fail-over managers.
For instance, the destruction of a volume causes such a
change in a volume ownership table. Another situation that
causes a change in the volume ownership table is a fail-over,
e.g., a situation in which the storage processor that is

5

10

15

20

25

30

35

40

45

50

55

60

65

24

responsible for a volume cannot adequately service the
volume and responsibility for the volume is transferred to
another storage processor. In any event, the volume owner-
ship table identifies the volume(s) for which each storage
processor in the primary data storage system 28 is respon-
sible.

The 1/O forward filter 270 obtains the volume id to which
the SCSI command relates from the VolID field 222 of the
command IOB and uses the volume id to determine, using
the volume ownership table, if the “home” storage processor
(e.g., the storage processor that is executing the I/O forward
filter) is the storage processor that is responsible for the
identified volume. If the volume is a volume for which the
“home” storage processor is responsible, the IOB is passed
on to the layer map filter 272. If, however, the volume is not
a volume for which the “home” storage processor is respon-
sible, the I/O forward filter 270 forwards the IOB to the I/O
forward filter associated with the “foreign™ storage proces-
sor that the volume ownership table indicates is the “owner”
storage processor of the volume. In the illustrated embodi-
ment, the forwarding of the IOB involves the use of the
switches 50A, 50B. When a result IOB subsequently reaches
the I/O forward filter of the foreign/owner storage processor,
the result IOB is forwarded back to the I/O forward filter 270
of the “home” storage processor. The “home” storage pro-
cessor passes the result back up the stack so that the result
can be placed in a result packet and sent to the originating
initiator.

Layer Map Filter. By way of background, the primary
data storage system 28 provides the ability to take a “snap-
shot” or “clone” of a volume at a particular point in time.
The snapshot function is implemented using layers or ver-
sions. The top layer of a layer stack may be read-write and
associated with a particular volume (e.g., a clone). Lower
layers in a layer stack may be read only and can be
associated with multiple volumes (e.g., a snapshot or snap-
shot version). A particular volume can have several layers or
versions of snapshots, each created at a different point in
time. Each layer or version, other than the original or “0”
layer, may have a pointer that links the layer or version to the
next most recently created layer or version for the volume.
Each layer or version, other than the “0”layer, may identify
the blocks in the volume that have been written since the
creation of the prior layer or version of a snapshot. When a
snapshot command is executed with respect to a volume, a
new layer (e.g., a new snapshot, a new version of a snapshot)
is created for the volume, the new layer is assigned a unique
layer id, a volume information table is updated so that the
layer id of the new layer is associated with a volume, and a
logical block address offset that is specified by an adminis-
trator is also associated with the volume. The blocks iden-
tified in the new layer or version of the snapshot can be both
written and read until such time as an even newer layer is
created. As such, the new layer is considered a read/write
layer. Relatedly, the creation of the new layer prevents the
blocks identified in the prior layer from being written. As
such, the prior layer is considered a read-only layer. Because
the execution of the snapshot command creates a new layer
that is a read/write layer and causes the prior layer to
transition from a read/write layer to a read-only layer, the
prior layer is the snapshot of the volume or version of the
snapshot of the volume at the time of the creation of the new
layer.

FIG. 5 is an example of a layer map 290 and an associated
volume information table 292. The layer map 290 identifies
volumes A, B, C with volume A associated with one initiator
and volumes B and C associated with another initiator.

US 9,423,978 B2

25

Further, layers 1, 2, and 3 have been established with respect
to volume A, with layer 3 being the newest layer relating to
volume A. Layers 4 and 1 have been established with respect
to volume B. Layer 5 has been established with respect to
volume C. Layer 5 essentially represents the creation of
volume C. The creation of layer 3 caused the volume
information table 292 to be updated to reflect that the newest
layer associated with volume A is layer 3. Further, the
snapshot command that caused the creation of layer 3
specified an LBA offset of zero, which is also reflected in the
volume information table 292. Lastly, the creation of layer
3 in response to the snapshot command also created a
snapshot of volume A that is reflected in layers 0, 1, 2 as of
the time layer 3 was created. The creation of layer 4 caused
the volume information table 292 to be updated to show
layer 4 as being the newest layer associated with volume B
and to reflect a specified LBA offset of zero. The creation of
layer 4 also created a snapshot of volume B that is reflected
in layers 1 and 0, with layer 1 being shared with volume A.
The creation of layer 5 caused the volume information table
292 to be updated to indicate that layer 5 is the newest layer
associated with volume C and to show a specified LBA
offset of zero.

The layer map filter 272 receives the IOB provided by the
1/0O forward filter 270 and processes the IOB to determine a
layer id (LID) and a layer logical block address (LLLBA) for
the related SCSI command. More specifically, the layer map
filter 272 uses the volume id specified in the VolID field 222
to index into the current volume information table 292 to
determine the newest LID associated with the volume and
LBA offset associated with the volume. The layer map filter
272 populates the LayerID field 242 with the LID retrieved
from the volume information table. If the offset retrieved
from the volume information table is non-zero, the layer
map filter 272 revises the LBA in the LBA/PageNum field
226 to reflect the LLBA, which is the current LBA value
plus/minus the retrieved offset value. The layer map filter
272 uses the LID and LBA to index into a layer-store table
(e.g., FIG. 8) and retrieve the StorelD and Store. BA values
to populate the Storeld field 246 and Store[.LBA field 248 of
the 10B.

It should be appreciated that certain of the fields in the
10B provide a mechanism for storing values that allow IOBs
to be processed out of time sequence to realize certain
benefits but still give the same end result that would occur
if the commands were executed in time sequence. The
benefit(s) that can be realized by processing IOBs out of
time sequence vary. For example, reordering a group of
1OBs can be done in the 1O Journal filter 282 to realize data
space and/or time-speed benefits relative to a data store to
which data is being moved or copied. In contrast, reordering
of a group of IOBs can be done in the Quality of Service
filter 274 to implement the desired quality of service for the
various initiator(s) utilizing the primary data storage system.
Even though there are or may be benefits associated with
processing IOBs out of time sequence, it is desirable and
perhaps necessary to get the same result for each I0OB
processed out of time sequence order as would be obtained
if the IOBs were processed in time sequence order. For
example, if a group of IOBs had a read IOB later in time than
a write IOB to the same layer and LBA and these IOBs were
executed such that the read IOB occurred before the write
1OB, a different result would be obtained than if the IOBs
were executed in time sequence order. However, the fields in
the IOB provide a mechanism for getting the same result as
if the IOBs were executed in time sequence order.

20

25

40

45

55

26

In the illustrated embodiment, the fields of the IOB that
provide the mechanism for executing IOBs out of time
sequence order and yet obtaining results upon the execution
of'the IOBs as if executed in time sequence order include the
InTimeStamp 250, LayerID field 242, StorelD field 246,
Store[.LBA field 248 of the IOB. An example that demon-
strates how this mechanism operates involves an OB relat-
ing to a snapshot command and two IOBs each relating to a
write block command. In this example, it is only necessary
to use the value in the LayerID field 242 to achieve the same
result in executing each of the IOBs out of their original
order as would be obtained if the original order was retained.
In the example, the original time sequence of IOBs extend-
ing from first received IOB to last received IOB is:

(ai) Write Block to Volume A, LBA=11 LayerID=null;

(bi) Create Snapshot, LayerID=3 as a child of LayerID=2

(see FIG. 5); and

(ci) Write Block to Volume A, LBA=12 LayerID=null.

If this sequence were processed by the Layer Map filter
272 and the time sequence order was maintained, the Layer
Map filter 272 would update the LayerID fields and the
sequence of I0OBs would appear as follows:

(ao) Write Block to Volume A, LBA=11 LayerID=2;

(bo) Create Snapshot, Layer]D=3 as a child of LayerID=2

(see FIG. 5); and

(co) Write Block to Volume A, LBA=12 LayerID=3.

If the time sequence order of these IOBs is altered by the
Layer Map filter 272 to realize a “backup of data” benefit
associated with the execution of a snapshot command as
soon as reasonably possible after recognizing the presence
of a snapshot command in a group of IOBs, the Layer Map
filter 272 would reorder the sequence of IOBs and updates
the LayerID fields in the IOBs as follows:

(aor) Create Snapshot, LayerID=3 as a child of Lay-

erID=2 (see FIG. 5);

(bor) Write Block to Volume A, LBA=12, LayerID=3; and

(cor) Write Block to Volume A, LBA=11; LayerID=2.

A comparison of the (a0)-(co) sequence to the (aor)-(cor)
sequence reveals that execution of the commands in either
sequence produces the same results. It should be appreciated
that the foregoing is a relatively simple example that only
required the use of the Layer ID field to achieve the same
results as if the IOBs were executed in the original sequence.
Different IOB sequences may need to make use of another
one of the InTimeStamp 250, LayerID field 242, StorelD
field 246, StoreLBA field 248, or a combination of two or
more of these fields, or some other field that needs to be
defined to handle a particular sequence of commands that
cannot be adequately addressed by a combination of the
noted fields. Further, it should be appreciated that the use of
the noted fields and/or other fields in the IOB can be used in
other filters to reorder IOBs as received by the filter to obtain
some benefit but yet achieve the same results as if the IOBs
were executed in the order received. For example, filters that
implement this functionality include the Quality of Service
filter 274 and 10 Journal filter 282.

Quality of Service (QoS) Filter. The quality-of-service
(QoS) filter 274 generally provides predictable data storage
performance to one or more initiators that utilize a shared
data storage system (e.g., the primary data storage system)
with multiple volumes. The desired performance of a par-
ticular volume (criticality) is established by the administra-
tor using the administrator computer 34 to communicate
with the management stack 100. When the administrator
uses the administrator computer 34 to create a volume, the
administrator also uses the administrator computer 34 to
associate a criticality with the volume. The management

US 9,423,978 B2

27

stack 100 maintains a table/tables that identifies each of the
initiators that the primary data storage system 28 will service
and the criticality associated with each of the volumes that
have been created. The “criticality” associated with a vol-
ume is reflected in certain performance or quality of service
goals. As such, a volume that has “highly critical” criticality
necessarily has relatively high performance goals. A volume
with “non-critical” criticality has relatively lower perfor-
mance goals. The group of attributes that is used to reflect
performance goals of the primary data storage system 28
with respect to a volume includes, allowed stores, latency,
throughput, and input/out operations per second (IOPS). An
allowed store is a store that a volume is allowed to use
during the processing, storing, or retrieving of data for a
command packet/IOB. Latency is a measure of the elapsed
time between when the filter stack 132 begins the processing
of command packet/IOB and when the filter stack 132
finishes preparing a reply packet/IOB. Throughput is a
measure of the number of bytes prepared for transfer (read/
write) per unit of time within the filter stack 132 with respect
to a volume. IOPS is a measure of the number of IOBs
processed within the filter stack 132 per unit of time with
respect to a volume. The specification of a criticality for a
volume is embodied in a goal with respect to each of these
attributes. It should be appreciated that a greater number,
lesser number, and/or different attributes may be appropriate
in certain situations. It should also be appreciated that two
volumes with the same criticality can have the same or
different quality of service or performance goals.

It should be appreciated that the performance of a data
store in the primary data storage system 28 can also be
characterized in terms of latency, throughput, and IOPS.
Further, this “store performance” of a data store is or may be
relevant to whether the performance goals with respect to a
volume are being met. As such, the production of statistics
relating to the “store performance” of data stores in the
primary data storage system 28 are produced and available
for use in assessing performance with respect to a volume.
Further, other hardware and software in the primary data
storage system 28 are also be characterized and monitored
for use in assessing performance with respect to a volume.

Generally, the QoS filter 274 operates to sort IOBs that are
associated with different volumes having different criticali-
ties (e.g., different performance goals) so as to try to meet
the goals of each volume. More specifically, the QoS filter
274 receives an IOB from the layer map filter 272 and
processes the I0OB to perform: (a) a first sort of the IOB
according to the volume ID, e.g., according to the criticality
associated with the volume, (b) a second sort of the IOB
according to the projected impact of the processing of the
1OB on the data storage system at the primary data storage
system 28, the projected impact taking into account certain
metrics/statistics relating to the operation of the primary data
storage system 28, and (c) a third sort of the IOB into an IOB
execution stack based upon the criticality associated with the
volume identified in the IOB (first sort), the projected impact
(second sort), past usage of the primary data storage system
28 as reflected in certain metrics/statistics, the current state
of the primary data storage system 28 including the state of
each of the stores, each of the switches, each of the storage
processors, and each of the network cards (e.g., Ethernet,
FC, or other network cards) as reflected in certain metrics/
statistics.

FIG. 6 is an example of the operation of the QoS filter 274
with respect to three volumes, each with a different critical-
ity. The first volume has a “mission critical” criticality; the
second volume has a “business critical” criticality that is less

10

15

20

25

30

35

40

45

50

55

60

65

28

than “mission critical” criticality; and a third volume has a
“non-critical” criticality that is less than “business critical”
criticality. As such, there are different performance goals
associated with each of the volumes in terms of latency,
throughput, and IOPS. Further, one or more of the initiators
38A-38C is sending block command packets to the primary
data storage system 28 that relate to the three volumes. Each
of the block command packets being processed to generate
an IOB, such as IOB 182.

The QoS filter 274 places each IOB that is received from
the layer map filter 272 into first-in-first-out input queue
300. The QoS filter 274 processes each of the IOBs in the
queue 300 in the order that the IOB was received in the
queue 300. The following describes the further processing of
the IOB 182 by the QoS filter 274.

The QoS filter 274 includes a group scheduler 302 that
sorts IOBs according to the criticality associated with the
volume to which an 1OB relates. To elaborate with respect
to IOB 182, the group scheduler 302 uses the volume id in
the VolID field 222 as an index into a volume information
table (e.g. volume information table 292) that indicates the
criticality value associated with that volume. The QoS filter
274 places the criticality value (e.g., a whole number in the
range of 1-3) in the Criticality field 260A of the QoS
attributes field 244 of the IOB 182. As such, the IOB 182
now has an indication of the criticality of the SCSI command
associated with the IOB. Further, the QoS filter 274 uses the
criticality value to sort the IOB 182 into one of the three goal
schedulers 304A-304C. In this example, because there are
three possible criticality values, there are three goal sched-
ulers 304A-304C. It should, however, be appreciated that
there can be as few as two possible criticality values and
more than three possible criticality values. Further, there is
a goal scheduler associated with each possible criticality
value. Similarly, the QoS filter 160 uses the volume id
specified in the VolID field 222 to index into the volume
information table 292 to populate the QoS attributes,
AllowedStores 260B, and AllowedLatency 260C fields with
the Allowed Stores, and Allowed Latency values retrieved
from the volume information table 292. Consequently, the
IOB 182 now has an indication of the stores that may be used
to service the IOB and the amount of time that can be used
to service the IOB.

Each of the goal schedulers 304A-304C processes an IOB
received from the group schedule 302 to assess the IOB as
to the projected impact of the execution of the SCSI com-
mand. In this regard, each 10B is assessed as to whether
execution of the SCSI command is likely to primarily affect
latency, throughput, or IOPS. The assessment takes into
account metrics/statistics obtained from the statistics data-
base 168. These metrics/statistics include volume related
statistics. For example, statistics relating specifically to the
volume with which the IOB is associated, statistics relating
to “criticality,” e.g., statistics relating to a number of vol-
umes that have the same “criticality”, and statistics relating
an initiator, e.g., statistics relating to a number of volumes
associated with a specific initiator can be used. The statistics
can include any number of factors, including throughput,
queue depth, latency, and use count for these volume related
statistics. However, currently it is believed that at least
latency statistics are needed. Further, these factors can
further include read and write related versions of each of
throughput, queue depth, latency, and use count. Moreover,
these factors can include current and historical statistics.
Current statistics being those statistics associated with the
shortest period of time (or shortest resolution) and historical
statistics being statistics associated with a greater period or

US 9,423,978 B2

29

periods of time relative to the shortest period of time. See,
example of a portion of a statistics database 258. The use of
statistics relating to “criticality” and/or historical statistics
facilitates the identification of imbalances and the like in the
processing of IOB associated with volumes having the same
criticality. For example, if the processing of IOBS associated
with one volume has placed another volume with the same
criticality increasingly behind its quality of service goals,
the statistical data provides a basis for identifying this issue
and taking action to bring the lagging volume back towards
its quality of service goals.

The assessment results in the IOB being placed in one of
a latency queue, throughput queue, and IOPS queue asso-
ciated with the goal scheduler. With reference to FIG. 6,
because there are three goal schedulers 304A-304C, there
are three FIFO latency queues 306 A-C, three FIFO through-
put queues 308A-308C, and three FIFO IOPS queues 310A-
310C. Further, the goal scheduler also stores the result of the
assessment in the IOB ProjectedImpact 260D field of the
QoS Attributes 244. Consequently, the IOB 182 now has an
indication of the projected impact of the execution of the
command associated with the IOB, in addition to an indi-
cation of the criticality of the IOB provided by the group
scheduler 302. It should be appreciated that it is also
possible to change the order of the group scheduler and the
goal scheduler such that the goal scheduler occurs first and
the group scheduler occurs second.

With continuing reference to FIG. 6, the QoS filter 274
includes a shared hardware scheduler 312 that assesses the
1OBs that are the next in line to be processed in each of the
latency, throughput, and IOPS queues (the IOBs that are at
the “bottom” of each of the queues) to determine which IOB
will be placed in or merged into an FIFO execution queue
314, e.g., a queue that defines the order in which the IOBs
received at the input queue 300 are to be executed. The
assessment of each of the IOBs takes into account the
criticality and projected impact of the execution of the
command associated with the IOB that is set forth in the QoS
attributes field of each IOB and metrics/statistics obtained
from the statistics database 168. These statistics include
hardware related statistics. For example, statistics relating
the CPU, Ethernet cards, and stores (e.g., SSD) can be
employed. These factors can include throughput, queue
depth, latency, use count. Further, current and/or historical
versions and/or read and/or write versions of these factors
can be used. It should be appreciated that the comparison of
the IOBs from the goal scheduler output queues to one
another are comparisons of different volumes that have
different criticalities and different quality of service goals
(IOPs, throughput, and latency). For example, if the next
selected 10B is throughput related the shared hardware
scheduler 312 will use information in the statistics database
168 to determine a store that has available bandwidth to
process the command and send the IOB down the stack
“tagged” with that store as the destination.

Once the shared hardware scheduler 312 makes a deter-
mination as to the next IOB that is to be placed in the
execution queue 314, the IOB is “popped” off the queue with
which it is associated and the IOB that was behind the
“popped” IOB takes the place of the “popped” IOB of the
queue. The shared hardware scheduler 312 makes its next
assessment with respect to the “new” IOB on the queue from
which the IOB was “popped” and the “old” IOBs that were
associated with the other queues. For example, with respect
to FIG. 6, at a given point in time, each of IOBs 316A-3161
is the next in line to be “popped” from their respective
queues. The shared hardware scheduler 312 evaluates each

20

25

30

35

40

45

55

30

of these IOBs to determine which one of IOBs 316A-3161
is the next to be placed in the execution queue 314. If, for
example, the shared hardware controller 312 decided that
IOB 316A was the next to be placed in the execution queue
314, the next evaluation by the shared hardware controller
312 would be with respect to IOBs 316B-3161 and IOB
316J, which has taken the place of IOB 316A at the head of
the IOPS queue 310A. Before an IOB is placed in the
execution queue 314, the related 10B is updated so as to
“push” an indication onto the IssuerStack field 252 that the
QoS filter 274 needs to do additional processing on the IOB
when the IOB is propagating up the filter stack 132.

It should be appreciated that FIG. 6 shows a specific
implementation of the QoS filter 274. The QoS filter 274 is
more generally characterized as producing a sum of
weighted factor values for an IOB that indicate or signify the
rank of the IOB relative to other IOBS being processed. In
this regard, the factors can include the volume and hardware
related throughput, queue depth, latency, use count, the
noted current-historical-read-write versions thereof. The
values for these factors are obtained from the IOB and the
statistics database. The weighted coefficients associated with
each factor being dynamically adjustable to reflect the
changing priorities with respect to the volumes and hard-
ware due to what is typically a changing workload being
placed on the system.

Later, when the IOB 182 is propagating up the filter stack
132 and reaches the QoS filter 274, the QoS filter 274,
informs the shared hardware scheduler 312 that the queues
should be re-evaluated.

Statistics Filter. Generally, the statistics filter 276 operates
to collect certain initiator and volume related data/statistical
information for each IOB passed to the statistics filter 276
from the QoS filter 274 when the IOB is going down the
filter stack 132. To elaborate with respect to IOB 182, the
statistics filter 276 processes the IOB 182 to obtain the
initiator id from the InitiatorID field 220, the volume id from
the VolID field 222, the sector count from the SectorCount/
PageOffset field 228, and the “In” time stamp value from the
In Time Stamp field 250. The statistics filter 276 also obtains
the current time from the operating system. The statistics
filter 276 uses the value of the “In” Time Stamp and the
current time to calculate the latency that the IOB has
experienced between when the “In” Time Stamp value was
established in the target driver filter 160 and when the
current time is obtained by the statistics filter 276 (herein-
after referred to as “first latency”). The statistics filter 276
communicates with the statistics database 168 so as to: (a)
update a table for the initiator that is maintained in the
database to reflect that an IOB associated with the initiator
will be processed that has the sector size obtained from the
IOB and that the IOB has experienced the calculated first
latency and (b) update a table for the volume that is
maintained in the database to reflect that an IOB associated
with the volume will be processed that has the sector size
obtained from the IOB and that the IOB has experienced the
calculated first latency.

The statistic filter 276 also pushes an indication onto the
IssuerStack field 252 of the IOB 182 that the statistics filter
276 needs to do additional processing when the IOB is
propagating up the filter stack 132. Further, the statistic filter
276 also pushes the current time onto the XtraContextStack
field 254.

Later, when the IOB 182 is propagating up the filter stack
132 and reaches the statistics filter 276, the statistics filter
276 obtains the time from the XtraContextStack field 254
(which is no longer the current time), obtains the “new”

US 9,423,978 B2

31

current time, and calculates a second latency, e.g., the
elapsed time between when the time value was obtained that
was pushed onto the XtraContextStack field 254 and the
10OB was propagating down the filter stack 132 and the when
the “new” current time was obtained. The statistics filter 276
updates the initiator and volume tables in the statistics
database 168 with the second latency value. Further, the
statistics filter 276 uses the values from the ImpactArray
260E to update the statistics database 168. When updating
the database it may be necessary to update multiple rows of
data, (e.g. when updating the CPU statistics it maybe
required to update the row for Second, Minute, Hour, and
Day).

Pattern De-Duplication Filter. Generally, the pattern de-
duplication filter 278 operates to preserve storage capacity
and reduce turnaround time to the initiator at the primary
data storage system 28 by preventing a block(s) of identical
data that are frequently written to the primary data storage
system 28 from being written multiple times with each such
writing of the block(s) of data consuming additional storage
capacity and time. More specifically, the pattern de-dupli-
cation filter 278 operates to identify a block(s) of data that
have a pattern which can be readily calculated. Character-
istic of a pattern is that the values of each byte of data in a
block can be calculated. For example, if the values of the
bytes of data in a block represent a triangle wave with
known characteristics (period, amplitude, phase, sampling
frequency etc.), the value of each of the bytes in the block
is susceptible to calculation. A pattern that can be “readily”
calculated is a pattern that can be calculated or retrieved and
the IOB completely processed (e.g., a result packet is
prepared) within the latency associated with the volume. It
should be appreciated that, for a given latency, the number
of patterns that can be readily calculated increases with
increasing processing speed.

Initially, with respect to an IOB associated with a SCSI
write-related command, the pattern de-duplication filter 278
makes a “headroom” calculation to determine if there is
sufficient time available to perform the operations associated
with pattern de-duplication, which includes the time needed
to identify a calculation engine that may be able to calculate
a pattern associated with the write data and the time needed
to determine if there is a match between the write data and
the data produced by the selected calculation engine. In this
regard, there needs to be sufficient time to conduct these
operations within whatever time remains in the allowed
latency 260C.

Generally, the pattern de-duplication filter 278 assesses
data in the first block of data associated with each 10B
having a SCSI write-related command to determine if a
known calculable pattern of data is present. If all of the data
in the first data block has a known calculable pattern, the
pattern de-duplication filter 278 proceeds to assess the
second and any additional blocks of data associated with the
IOB. If all of the data in all of the blocks of data associated
with the IOB have a known calculable pattern, there are two
possibilities.

First, if the current values in the StorelD field 246 and the
Store[.BA field 248 of the IOB are not currently identified as
being the values of the StorelD and the Store.LBA associated
with the pattern, the current values in the StorelD field 246
and Store[.BA field 248 in the IOB are updated. The current
values in the StorelD and Storel. BA fields were established
in the layer map filter 272. A portion of the application
memory that is dedicated to storing a particular pattern
calculator is identified as a calculation engine 320. Although
only one calculation engine 320 is shown in FIG. 2, there is

10

15

20

25

30

35

40

45

50

55

60

65

32

a calculation engine for each pattern calculator. Because the
current values in the StoreID field 246 and the StoreLBA
field 248 do not point to the calculation engine 320, the
values in the StoreID field 246 and the Store[. BA field 248
need to be updated to point to the calculation engine. Once
the values for StoreID field 246 and Storel BA field 248
have been updated, the pattern deduplication filter 278
updates the command field 230 of the IOB so as to reflect
that a de-dup write needs to be done and passes the IOB
down the filter stack 132.

Second, if the current values in the StorelD field 246 and
the Store[.BA field 248 of the IOB are currently identified as
being the values of the StorelD and the Store.LBA associated
with the pattern, the values in the StorelD field 246 and
Store.BA field 248 in the current IOB are not modified. The
values in the StorelD and Storel BA fields were established
in the layer map filter 272 and respectively point to the
relevant calculation engine for calculating the pattern.
Because the pattern of the blocks of data has not changed
from the prior IOB with the same values in the Volld field
222 and the LBA/PageNum field 226, the pattern de-dupli-
cation filter 278 places a “success” code in the error code
field 232 and causes the IOB to start propagating up the filter
stack 132, thereby indicating that the SCSI write command
of the IOB has been completed.

If the data in any block(s) of data associated with the IOB
do not have a known calculable pattern, the pattern de-
duplication filter 278 determines the pattern deduplication is
not possible and passes the IOB on to the dictionary de-
duplication filter 280.

While the assessment of the first block of data associated
with the IOB could be done with respect to each known
calculable pattern, the pattern de-duplication filter 278
avoids doing so by making an initial comparison of two
bytes in a block of data and using the result of the compari-
son for concluding that the data in the block: (a) potentially
has one of the known calculable patterns or (b) does not
possess one of the known calculable patterns. This two byte
comparison is a form of a “hash” calculation. It should be
appreciated that methods other than the noted two byte
comparison (a form of hash) can be applied (e.g. CRC or
hash) as long as the methods can make the determination
within the latency constraint, e.g., the allowed latency set
forth in volume information table 292. If the comparison
indicates that the data in the block potentially has one of the
known calculable patterns, the pattern deduplication filter
278 proceeds to assess the data in the block to determine
whether the data in the block actually does have the iden-
tified, known calculable pattern.

More specifically, the pattern de-duplication filter 278
utilizes the pattern calculator to calculate the value that a
byte(s) of the pattern should have if present in the data block
and compare each such value to the actual value associated
with the byte(s) in the data block. Generally, it is desirable
to utilize a calculator that is efficient, e.g., makes a deter-
mination of whether or not the pattern is present in the data
more quickly rather than less quickly so as to make the
determination within the latency constraint, e.g., the allowed
latency set forth in volume information table 292. Further,
the comparison is done in the fastest data store available,
typically memory store 52A and 52B.

For example, if the pattern is a triangle wave and there is
an even number of cycles of the triangle wave in a block of
data, a relatively efficient calculator for determining if this
wave pattern is present in a block would: (a) with respect to
the potential first cycle of the wave pattern in the block, use
the pattern calculator to calculate a first value for the wave

US 9,423,978 B2

33

pattern and compare that value to the two bytes in the data
that should have the calculated value if a first cycle of the
triangle wave is present in the block and (b) repeat this
calculation and comparison to the values associated with
different bytes in the data block until the presence of the first
cycle of a triangle wave in the data is either confirmed or
disaffirmed. If a first cycle of the triangle wave is not
present, the pattern de-duplication filter 278 passes the IOB
on to the dictionary de-duplication filter 280. If the presence
of a first cycle of the triangle wave in the data is confirmed,
the calculator proceeds to compare the data associated with
the first cycle of the triangle wave to the data in the block
that might be the second cycle of the triangle wave to either
confirm or disaffirm the presence of the second cycle of the
triangle wave. If the second cycle of the triangle wave is not
present, the pattern deduplication filter 278 passes the IOB
on to the dictionary de-duplication filter 280. If the presence
of the second cycle of the triangle wave is confirmed, the
calculator proceeds to compare the data associated with the
first and second cycles of the triangle wave to the data in the
block that might be the third and fourth cycles of the triangle
wave. This process of comparing groups of bytes that
increase in number by a factor of two with each comparison
continues until either the presence of the pattern in all of the
blocks associated with IOB is confirmed or disaffirmed.

Read De-Duplication Operation. Generally, the pattern
de-duplication filter 278 operates on an IOB having a SCSI
read-related command to determine if the data at the iden-
tified volume id and LBA is data that has been previously
de-duplicated in the processing of an IOB with a SCSI
write-related command. More specifically, the pattern de-
duplication filter 278 obtains the value in the StorelD field
246. If the value in the StoreID matches a StorelD assigned
to a calculator engine (e.g., engine 320), the pattern de-
duplication filter 278 concludes that the read-related com-
mand in the IOB relates to pattern data that has been
de-duplicated. Further, the de-duplication filter 278 obtains
the value in the Store[L.BA field 248 to identify the vector
into the calculator for calculating the particular pattern and
uses the calculator to create the block(s) of patterned data in
the memory store (e.g., CPU bus memory 52A or CPU bus
memory 52B), if the block(s) of patterned data do not
already exist in the memory store. The pattern de-duplica-
tion filter 278 then updates the value in the DataSegment-
Vector field to point to the address in the memory store (e.g.,
CPU bus memory 52A or 52B) that has the copy of the
calculated pattern. Further, the pattern de-duplication filter
278 places a “success” code in the error field 232 and causes
the IOB to start propagating up the filter stack 132, thereby
indicating that the SCSI read-related command of the IOB
has been completed. If the value in the StorelD does not
match a StorelD assigned to a calculator engine, the IOB is
passed down the filter stack 132 for further processing.

Dictionary De-Duplication Filter. Generally, the diction-
ary de-duplication filter 280 operates to preserve storage
capacity and reduce turnaround time to the initiator at the
primary data storage system 28 by preventing blocks of data
associated with an IOB that constitute a page (a predefined
number of contiguous blocks of data) that are commonly
written to the primary data storage system 28 and do not
have a readily calculable pattern from being written multiple
times such that each writing of the page consumes additional
storage capacity and time.

By way of background, the dictionary de-duplication filter
280 has access to a dictionary table that is capable of holding
a limited and predetermined number of entries. Each non-
null entry in the dictionary table relates to a page of data

5

10

15

20

25

30

35

40

45

50

55

60

65

34

identified by an advanced de-duplication filter, one of the
background filters 164, as being one of the most common
pages of data being written to storage. More specifically,
each non-null entry in the dictionary table for a “dictionary”
page has StorelD and StoreL.BA values for a copy of a
“dictionary” page that is on a dictionary store 322. Because
the dictionary de-duplication filter 280 is one of the group of
foreground filters and speed of execution is a priority in the
foreground, the dictionary store 322 that holds the copy of
the “dictionary” page is typically a high-speed store, like
memory store 52A or memory store 52B. The entry in the
dictionary table also identifies a portion of data in the
relevant “dictionary” page (e.g., the second 64 bytes of data
in the page) that is unique relative to all of the other non-null
entries in the dictionary table. While it is feasible to use
different identifying portions of a “dictionary” page for each
entry (e.g., one entry has the first 64-bytes of a first “dic-
tionary” page and another entry has the second 64-bytes of
a second “dictionary” page) as long as the data in each of the
portions is unique, the use of the same identifying portion of
data from each of the “dictionary” pages facilitates the
assessment of whether the page associated with an IOB can
be de-duplicated. This is a form of hash, other forms of hash
are also feasible. Consequently, each non-null entry in the
dictionary table relates to the same identifying portion of a
“dictionary” page (e.g., the second 64-bytes) as the other
entries in the dictionary table. Further, the data in the
identifying portion relating to a single “dictionary” page is
unique relative to all the other non-null entries in the
dictionary table. Because the most commonly written pages
can change over time and the dictionary table has a limited
and predetermined number of entries, the advanced de-
duplication filter can change the entries in the dictionary
table. In this regard, a change to the table may require that
a different identifying portion of the pages to which the
entries in the table relate be used to preserve the uniqueness
of each entry in the table. The identifying portion of each of
the dictionary pages that is unique is maintained by the
advanced de-duplication filter and available to the dictionary
de-duplication filter 280. The advanced de-duplication filter
also ensures that a copy of each of the common pages that
is identified in dictionary table is in the dictionary store 322.

Initially, with respect to an IOB associated with a SCSI
write-related command, the dictionary de-duplication filter
280 makes a “headroom” calculation to determine if there is
sufficient time available to perform the operations associated
with dictionary de-duplication, which includes the time
needed to identify a dictionary entry that may correspond to
the write data and the time needed to determine if there is a
match between the write data and the data in the dictionary
entry. In this regard, there needs to be sufficient time to
conduct these operations within whatever time remains in
the allowed latency 260C.

In processing an IOB with a write-related command that
relates to a block(s) of data, the dictionary de-duplication
filter 280 determines if the write command relates to a page.
This determination is made by obtaining the sector count
value in the SectorCount/PageOffset field 228 in the IOB. If
the value is not equal to the number of blocks in a page, the
dictionary de-duplication filter 280 passes the IOB on down
the filter stack 132. If, however, the value is equal to the
number of blocks in a page, the dictionary de-duplication
filter 280 obtains the same portion of the page associated
with the IOB that is associated with the identifying portion
in each entry in the dictionary table and compares this
portion of the page to each identifying portion in the
dictionary table. If there is no match (e.g., the IOB relates to

US 9,423,978 B2

35

a page that is not common enough to justify an entry in the
dictionary table), the dictionary de-duplication filter 280
passes the IOB on down the filter stack 132. If there is a
match, then there is a possibility that the page associated
with the IOB is a match with the “dictionary” page to which
the entry in the dictionary table relates. To determine
whether there is such a match, the dictionary de-duplication
filter 280 compares the page associated with the IOB to the
copy of the “dictionary” page that is located at the StorelD
and Store[.BA of the dictionary store 322 set forth in the
dictionary table. The data associated with the write IOB and
the dictionary page are both in memory store 52A or 52B,
the fastest type of store in the illustrated system. As such, the
comparison occurs more quickly than if the comparison was
done in some other store in the system. If there is no match,
the dictionary de-duplication filter 280 passes the IOB down
the filter stack 132. If there is a match, there are two
possibilities.

First, if the current values in the StorelD field 246 and the
Store[.BA field 248 of the IOB are not currently identified as
being the values of the StorelD and the Store.LBA associated
with the copy of the “dictionary page” in the dictionary store
322, the current values in the StorelD field 246 and Store-
LBA field 248 in the IOB are updated. The current values in
the StorelD and StoreLBA fields were established in the
layer map filter 272. Once the values for StorelD field 246
and Store.BA field 248 have been updated, the dictionary
de-duplication filter 280 updates the command field 230 of
the IOB so as to reflect that a dedup write needs to be done
and passes the IOB down the filter stack 132.

Second, if the current values in the StorelD field 246 and
the Store[.BA field 248 of the IOB are currently identified as
being the values of the StorelD and the Store.LBA associated
with the copy of the “dictionary page” in the dictionary store
322, the current values in the StorelD field 246 and Store-
LBA field 248 in the IOB are not updated. The current values
in the StoreID and StoreL.BA fields were established in the
layer map filter 272. The dictionary de-duplication filter 280
places a “success” code in the error field 232 and causes the
1OB to start propagating up the filter stack 132, thereby
indicating that the SCSI write command of the IOB has been
completed. For example, the primary storage system 28 has
previously persisted the same data at the same layer and
same [.BA and therefore does not need to make any changes
due to this IOB.

Read De-Duplication Operation. Generally, the dictionary
de-duplication filter 280 operates on an IOB having a SCSI
read-related command that need not relate to a page to
determine if the data associated with the identified volume
id and LBA is data that has been previously de-duplicated in
the processing of an IOB with a SCSI write-related com-
mand relating to the same volume id and LBA. More
specifically, the dictionary deduplication filter 280 obtains
the value in the StorelD field 246 and determines if the value
is currently associated with the dictionary store 322. If the
value is currently associated with the dictionary store 322,
the dictionary de-duplication filter 280 then updates the
value in the DataSegmentVector field to point to the address
in the memory store (e.g., memory store 5S2A or 52B) that
has the copy of the dictionary page and, more specifically, to
point the first block of the page that has the first block to
which the SCSI read command relates. Further, the diction-
ary de-duplication filter 280 places a “success” code in the
error field 232 and causes the OB to start propagating up the
filter stack 132, thereby indicating that the SCSI read-related
command of the IOB has been completed. If the value in the

10

15

20

25

30

35

40

45

50

55

60

65

36

StoreID field 246 is not currently associated with the dic-
tionary store 322, the IOB is passed down the filter stack 132
for further processing.

1/0 Journal Filter. Generally, the /O journal filter 282
operates with respect to IOBs in the execution queue 314
that have SCSI write-related commands (de-dup write and
write) that have not been fully addressed by an intervening
filter to move the actual data that is associated with the IOBs
and currently resident in a non-redundant and/or non-per-
sistent data store or other information that allows the data to
be reproduced to a redundant and persistent data store (e.g.,
a journal store). Further, because the I/O journal filter is part
of the foreground filters 162, the /O journal filter 282
endeavors to do so in a timely fashion. Because the actual
data associated with an IOB or other information that allows
the actual data associated with the IOB to be reproduced is
moved to a redundant and persistent data store, the I/O
journal filter 282 also causes each such IOB to begin
propagating up the filter stack 132, thereby acknowledging
completion of the write-related command. The 1/O journal
filter 282, in certain embodiments, may therefore acknowl-
edge completion of a write command in response to storing
data of the write command (e.g., the associated IOB) in a
journal preserved in a non-volatile storage medium (e.g.,
SSD 54) of a persistent data store 48. In a further embodi-
ment, the I/O journal filter 282 may acknowledge comple-
tion of a write command before the data has reached its
intended destination, in a hard disk drive 56, a storage
volume, a backup/tape server 62, a cloud storage provider
64, or the like, because the data is redundantly and persis-
tently preserved in one or more journals of the one or more
data stores 48A, 48B.

There are two characteristics of the 1/O journal filter 282
that each contribute to the timely processing. The first
characteristic is that each write to the redundant and persis-
tent store is the writing of a page, which may be comprised
of a large number of blocks. A page, as used herein, may
comprise a fixed-length logical or physical unit, region, or
segment of memory or storage. In certain embodiments, a
page may comprise a smallest unit of data for memory
allocation, for transfer between memory and a data store 48,
or the like. As such, for a given number of data blocks, the
writing of pages requires fewer writes relative to an
approach in which there is a separate write operation for
each block. The second characteristic is that the writes are
done to locations in the redundant and persistent store that
have increasing/decreasing addresses. For example, a num-
ber of page writes could be done to locations 1, 5, 20, and
200 on the store. This avoids the time overhead associated
with writing to locations that are unordered (e.g., locations
1, 200, 20, and 5).

With reference to FIG. 7, the 1/O journal filter 282 in one
embodiment operates on a journal store that is implemented
in a redundant fashion between the SSDs 54 A, 54B, both of
which also exhibit persistence. It should be appreciated that,
while redundant and persistent stores are commonly utilized,
other types of stores that do not exhibit redundancy or
persistency can also be employed. Each of the SSDs 54A,
54B, has a copy of a journal 340, a data storage space of
known length or capacity that stores the data associated with
the IOBs and related metadata. Redundancy is provided by
each of the SSDs 54A, 54B having a copy of the journal 340.
For convenience, the operation of the 1/O journal filter 282
is described with respect to a single copy of the journal 340,
which may be referred as the journal 340, with the under-
standing that changes to one copy of the journal are also
made to the other copy of the journal.

US 9,423,978 B2

37

In the illustrated embodiment, the journal 340 has a data
storage space of 640 Gigabytes. The storage space is divided
into a plurality of 2-Megabyte journal page (JP) 342. Each
journal page 342 has a journal page header 344 that iden-
tifies the journal page within the journal 340. The remainder
of a journal page is available to be populated with a plurality
of journal entries. A journal entry (JE) 346 is comprised of
a journal entry header (JEH) 348 that stores metadata related
to the journal entry and a journal entry data field 350 capable
of storing 4-kbytes of actual data associated with an IOB or
other information that allows the actual data associated with
the IOB to be reproduced. The journal entry data field 350
is further divided into 8 512-byte journal block 351.

The journal entry header 348 is comprised of a LayerLBA
field 420, a LayerID field 422, a StorelD field 424, a
Store[.LBA field 426, a TimeSeqID field 428, a ValidMask
field 430, a Restricted field 432, and a Clean field 434. The
JEH fields are populated with the value for the layer LBA
that is present in the LBA/PageNum field 226 of the IOB
that provided the first 512-byte block in the journal entry
data field and the values in the LayerID, StorelD, and
StoreL BA fields of the same IOB. The ValidMask field 430
is also present in the journal entry header 348 and is used to
identify the 512-byte blocks that are in the journal entry data
field 350. For example, if the LBA is 20 and the ValidMask
field 430 is set to “10001000”, LBAs 20 and 24 are present
in the journal entry data field 350. Initially, the Restricted
field 432 is set to a value indicating that the JE is not
restricted, e.g., the write block operations associated with
the JE are not constrained to being executed in the presented
sequence. Similarly, the Clean field 434 is initially set to a
value indicating that the JE is “dirty”, e.g., exists only in the
journal 340.

Associated with the journal 340 is a journal table that
maps the values in the LayerID and LayerL.LBA fields of the
1OB or journal entry header 348 to a particular journal page
and journal entry. With reference to FIG. 7, an example of
a journal table 352 is illustrated.

With the foregoing background in mind, the I/O journal
filter 282 identifies IOBs in the execution queue 314 that
have pending SCSI write-related commands (de-dup write
and write), e.g., SCSI write-related commands that have not
been fully addressed by an intervening filter. The 1/O journal
filter 282 also identifies the currently active journal page and
journal entry, e.g., the location in the journal 340 that is to
be next in line to be populated with write-related data. For
example, the currently active journal page could be journal
page number “20” and the currently active journal entry
could be journal entry “7”. The currently active journal entry
either has no data in the journal entry data field or there is
data in at least the first 512-byte journal block and possibly
one or more of the immediately following 512 byte journal
blocks but not in all of the 512-byte journal blocks.

A “working” copy of the currently active journal page is
located in the application memory of a storage processor.
With respect to the “working” copy of the currently active
journal page, the /O journal filter 282 further determines if
the first 512-byte block of the current journal entry has been
written. Ifthis is not the case, the I/O journal filter 282 writes
the next 512-byte block associated with an IOB into the first
512-byte block of the journal entry data field. If the IOB
includes additional 512-byte blocks, these additional blocks
(up to seven blocks) are also sequentially written into the
current journal entry data field of the working copy. The I/O
journal filter 282 also copies the values from the LayerID
field 242, LBA/PageNum field 226, StorelD field 246,
Store[.BA field 248, and In Time Stamp field 250 to the

20

30

35

40

45

50

55

60

65

38

journal entry header LayerID field 422, Layer. BA field 420,
StorelD field 424, Store[.BA field 426, and TimeSeqlD field
428 respectively. The value in the Restricted field 432 is
populated to indicate no restriction. The value in the Clean
434 field is populated to indicate dirty or not clean. Finally
the I/O journal filter 282 sets the value in the ValidMask field
430 to reflect the blocks that have been or will be loaded into
the journal entry data field. For example, if the IOB includes
five blocks of data, the 1/O journal filter 282 would write the
first of the five blocks of data into the first block of the
journal data entry field and the other four blocks into the
immediately following four blocks of the journal data entry
field and establish the journal header data based on the first
block of data moved into the journal data entry. In this
example, the ValidMask field 430 would be set to
“111110007.

If the first 512-byte block of the currently active journal
entry has been written, the I/O journal filter 282 uses the
value of the LayerID field 422 in the journal entry header,
the value of the LayerL.BA field 420 in the journal entry
header, and the value of the ValidMask field 430 in the
journal entry header to determine the values for the LayerID
and the layer LBA that should go in the next available
512-byte block of the journal entry data field. For instance,
if the first block in the journal entry data field contained data
relating to a layer id of 0 and a layer LBA of 20 and the next
available block was the second block in the journal entry
data field, the I/O journal filter 282 would conclude that the
block of data for layer id 0 and layer LBA 21 should go in
the second block in the journal entry data field. The calcu-
lated values for the layer id and layer LBA are compared to
the actual layer id and layer L. BA values associated with next
block of data associated with the IOB. If there is a match, the
next block of data associated with the IOB is written into the
next available 512-byte block of the journal entry data field
and the ValidMask field 430 is appropriately updated. To
continue with the example, if the 512-byte block of the IOB
journal had a layer id of 0 and layer LBA of 21, the /O
journal filter 282 establishes the 512-byte block of the IOB
in the second 512-block of the journal entry data field. If
there is not a match and the currently active journal entry is
not the last journal entry for the currently active journal
page, the currently active journal entry is incremented and
the 512-byte block associated with the IOB is written in the
first block of the new active journal entry. If there is not a
match and the currently active journal entry is the last
journal entry for the currently active page (e.g., the working
copy of the currently active journal page is finished), the
working copy of the active journal page is written to the
actual journal 340 in the redundant and persistent store and
a working copy of the next journal page is established in
application memory.

If any write IOB has consumed, released, or modified a
JE, the /O journal filter 282 will update the journal table
352. Specifically, the /O journal filter 282 obtains the value
from the LayerLBA field 420 and the value from the
LayerID field 422. The I/O journal filter 282 determines if
there is an entry in the journal table (e.g., journal table 352)
that has the layer id and the layer LBA. If there is such an
entry, the I/O journal filter 282 updates the Restricted field
432 of the currently active JE to indicate it is restricted. The
1/O journal filter 282 further updates the journal page and
journal entry fields with the currently active journal page
and currently active journal entry. If there is not an entry, the
1/0 journal filter 282 creates and entry in the table and enters
the layer 1D, layer LBA, journal page, and journal entry
values.

US 9,423,978 B2

39

Generally, the /O journal filter 282 operates with respect
to IOBs in the execution queue 314 that have SCSI read-
related commands (read) that have not been fully addressed
by an intervening filter. More specifically, the I/O journal
filter 282 obtains the value from the LayerID field 242 and
the layer LBA value from the LBA/PageNum field 226. The
1/0O journal filter 282 determines if there is an entry in the
journal table (e.g. journal table 352) that has the layer id and
the layer LBA. If there is such an entry, the block(s) of data
that are the subject of the read command are located in the
journal at the journal page and journal entry specified for the
entry in the journal table that has the noted layer id and layer
LBA. The I/O journal 282 proceeds to the specified journal
entry, retrieves the LBA from the journal entry header,
determines the difference between the requested layer LBA
and the journal entry LBA to identify which of the 512-byte
journal block(s) needs to be read. The I/O journal 282 causes
the relevant block(s) to then be read into memory store (e.g.,
memory store 52A or 52B) updates the DataSegmentVector
field 240 to point to the location in memory store that
contains the read blocks. The /O journal filter 282 places a
“success” code in the error field 232 of the IOB and causes
the IOB to start propagating up the filter stack 132, thereby
indicating that the SCSI read command of the IOB has been
completed. If there is no entry in the journal table for the
specified layer id and layer LBA, the block(s) that are the
subject of the SCSI read-related command are not in the
journal 340. In this case, the 1/O journal filter 282 passes the
IOB on down the filter stack 132.

While the operation of the 1/O journal filter 282 has been
described with respect to 512-byte blocks and 2-megabyte
pages, it should be appreciated that different block sizes can
be employed in an effort to match the characteristics of the
data to the characteristics of one of the stores among a group
of stores in a data store system, the stores having different
characteristics from one another. For example, the sizes of
the blocks, data journal entry fields, and journal page can
each be varied to achieve this goal.

The /O journal filter 282 is also capable of operating so
as to implement a dynamically tunable journal in which the
order of write-related commands in the execution queue 314
may be changed or altered so as to realize data space and/or
time-speed benefits or efficiencies relative to a data store, as
described in greater detail below with regard to FIG. 9. To
elaborate, the I/O journal filter 282 receives the IOBs in the
execution queue 314, analyzes a group of IOBs in the
execution queue 314 to determine if changing the order of
the IOBs will produce a data space and/or time-speed
benefit. It should be appreciated that changing the order of
the IOBs to attain a benefit results in at least two IOBs that
were separated by intervening IOBs in the execution queue
314 being positioned closer to one another in the reordered
group of I0Bs. If the analysis shows that such a benefit
would result from reordering, the I/O journal filter 282
produces a reordered group of IOBs. If, on the other hand,
the analysis shows that no or little benefit would result from
reordering the group of IOBs, the original order of the group
of IOBs remains unaltered. The I/O journal filter 282
appends either the reordered group of IOBs or the group of
10Bs (e.g., the original unaltered group of IOBs) to the
working copy of the currently active journal page. If the
currently active journal entry is the last journal entry for the
currently active page (e.g., the working copy of the currently
active journal page is finished), the working copy of the
active journal page is written to the actual journal 340 in the
redundant and persistent store and a working copy of the
next journal page is established in application memory. As

40

45

40

previously noted, this description relates to a single copy of
the journal 340 that is typically located on is one of SSD 54 A
and SSD 54B. However, redundancy is provided by having
two copies of the journal 340 with, in the illustrated embodi-
ment, each copy of the journal 340 located on one of SSD
54A and SSD 54B.

While the foregoing description of potentially reordering
a group of IOBs in the execution queue 314 based upon the
identification of a data space and/or time-speed benefit, it
should be appreciated that such reordering can be precluded
or limited in certain situations. To elaborate, if the group of
IOBs in the execution queue 314 includes IOBs that overlap,
e.g., are associated with same layer ID in the LayerID field
422 and operating on at least one layer LBA that is common
to the LayerLBA fields 420 of at least two IOBs. For
example, if a group of three IOBs in the execution queue 314
includes: (a) a first IOB has a layer ID of “3” in the LayerID
field 422 and a layer LBA of “0” in the Layer.LBA field 420,
(b) a second IOB that has a layer ID of “2” in the LayerID
field 422 and a layer LBA of “4” in the Layer.LBA field 420,
and (c) a third IOB that has a layer ID of “3” in the LayerID
field 422 and a layer LBA of “0-1” in the LayerL.BA field
420, the overlay of the first and third IOBs limits the analysis
of whether or not to reorder the IOBs to the first and second
10Bs.

It should be appreciated that the analysis of a group of
IOBs to determine whether there is data space and/or
time-speed benefit to reordering the IOBs can be imple-
mented with respect to other data stores. The foregoing
description of the analysis of a group of IOBs related to a
group of IOBs in an execution queue 314 and related to the
journal 340, a copy of which is associated with each of the
SSDs 54A, 54B. The analysis can also be performed with
respect to a group of IOBs associated with the journal 340
and related to one or both of the RAID disk array 56A, 56B,
which is further described below with respect to the sorting
or reordering to obtain contiguous blocks of data in the
de-stage filter 370. Further, it should be appreciated that the
analysis of a group of IOBs to determine if a data space
and/or time-speed benefit can be obtained can be applied to
only one data store in a data store system comprised on only
one data store, all of the data stores in a data store system
having multiple data stores, or to a subset of all of the data
stores in a data store system having multiple data stores.
Background Filters

Generally, the group of background filters 164 operates to
place data on a data store with performance characteristics
that are commensurate with the use of the data. For example,
if a particular unit of data is frequently read and/or written,
the group of background filters endeavor to place such data
on a store with a high-performance characteristics (e.g., low
latency, high throughput, and high IOPS). Conversely, if a
particular unit of data is infrequently read and/or written, the
group of background filters endeavor to place such data on
a store with lower relative performance characteristics.
Moreover, to the extent that placing a unit of data requires
moving the data from one store to another store, the group
of background filters 164 operates to move the unit of data
in a manner that is speedy, conserves storage capacity, and
has a relatively small impact on the processing of IOBs
directly related to an initiator. The group of background
filters operate at the lowest criticality within the primary
data storage system 28 or with an allowed latency that is
significantly greater than the latency allowed in the fore-
ground filters.

The background filters 164 operate in two contexts. The
first context involves the potential writing of data that is on

US 9,423,978 B2

41

one store to another store. In the background filters 164, such
potential movements are accomplished using a super IOB
that has a write-related SCSI block command and facilitates
communications between the filters. A super IOB is identical
in form to IOB 182, except that the value of the PageMode
field 224 is set to “on”, which means that the values in the
LBA/PageNum field 226 and the SectorCount/PageOffset
field 228 now relate to pages and not blocks. The second
context involves the processing of an IOB that has a SCSI
read-related command that has not yet been fully addressed
by any of the filters in the filter stack 132 that have
previously processed the IOB.

Operation of the background filters 164 with respect to
operations that involve a super IOB is invoked by the /O
journal filter 282 indicating that a portion of the journal 340
is “dirty”, e.g., has not been processed to determine whether
data in the journal should be moved to a different store. The
actual percentage of the journal that is “dirty” is compared
to a predetermined threshold value. If the actual percentage
is less than the threshold percentage, operation of the
background filters 164 is not invoked with respect to super
1OBs. If the actual percentage of the journal that is “dirty”
has a triggering relationship with respect to the threshold
percentage (equals or exceeds, or only exceeds), operation
of the background filters 164 is invoked for super 1OBs.
With respect to operations that involve an IOB with a SCSI
read-related command, the presence of the IOB in the
execution queue 314 is detected and the operation of the
background filters 164 is invoked.

The background filters 164 include a destage filter 370,
advanced deduplication filter 372, page pool filter 374, store
converter filter 376, and store statistics collection filter 378.

De-Stage Filter. Generally, the destage filter 370 operates
to move data between tiers of data stores with different
characteristics and move the data so that the characteristics
of the data reflect the characteristics of the store. In this
regard, when the destage filter 370 is invoked because the
percentage of the journal that is “dirty” has met some
criteria, the destage filter 370 operates to determine if one or
more pages of contiguous data blocks can be assembled
from data blocks that typically are scattered throughout the
journal. The destage filter 370 also makes a determination as
to what should happen to any data blocks that cannot be
assembled into a page.

If such a page can be assembled, the destage filter 370
generates a super IOB and passes the super IOB down the
filter stack 132. The destage filter 370 further assesses
whether each of the blocks that formed the page should, in
addition to being the subject of the super IOB that will
ultimately result in the blocks being written to another store,
be persisted in the journal (e.g., whether a block is being
read frequently enough to justify leaving the block in the
journal). If two or more blocks are to be persisted in the
journal, the destage filter 370 further assesses whether these
blocks should remain in their current locations in the journal
or be “compacted”, e.g., consolidated into one or more
consecutive journal entries. It should be appreciated that
data for any specific layer and layer LBA may persist in
multiple stores or tiers simultaneously.

With respect to a data block or blocks that are in the
journal and that cannot be assembled into a page, the destage
filter 370 operates to assess whether each such block has
been resident in the journal for a period of time that exceeds
a predefined threshold. If the threshold is exceeded, the
destage filter 370 generates an IOB (not a super IOB) for the
data block or group of contiguous blocks that is less than a
page and passes the IOB down the filter stack 132. Further,

10

15

20

25

30

35

40

45

50

55

60

65

42

the destage filter 370 assesses whether the block(s) should
be persisted in the journal (e.g., whether the block(s) is being
read frequently enough to justify leaving the block in the
journal). If two or more blocks are to be persisted in the
journal, the destage filter 370 further assesses whether the
blocks should remain in their current locations in the journal
or be “compacted”, e.g., consolidated into one or more
consecutive journal entries. If the threshold is not exceeded,
the destage filter 370 assesses whether the two or more
blocks of data that are logically contiguous blocks that are
separated from one another in journal but can be compacted
into a single journal entry or journal page. If not, the blocks
remain in their current locations in the journal.

With the foregoing background in mind, the destage filter
370 determines if a page(s) can be assembled from the data
blocks currently residing in the journal 340. In this regard,
the destage filter 370 makes a working copy of the current
journal table (e.g. journal table 352) and sorts or reorders the
entries in the copy of the journal table by layer id and layer
LBA. The destage filter 370 analyzes the sorted journal table
and, if necessary, the ValidMask field 430 in the headers of
one or more journal entry headers 348 to determine if there
is a layer with enough consecutive layer LBAs of the data
block size to equal a page. For example, if the block size is
512-bytes and the page size is 2-megabytes, 4096 consecu-
tive blocks of data are required to assemble a page. If there
are enough consecutive blocks of data to assemble a page,
the destage filter 370 assembles a working page in a memory
store (memory store 52A or 52B). A super IOB is generated
and the IOB is passed down the filter stack 132.

After the destage filter 370 assembles a page, the destage
filter 370 builds a super IOB 182 and populates certain fields
of'the IOB 182 with values from or derived from the journal
340. Specifically, the destage filter 370 sets the command
field 230 to block write command. If the data is a full page,
then the destage filter 370 sets the PageMode field 224 of the
IOB 182 as “on” to indicate that the IOB 182 initially relates
to a page and not a block or blocks of data. Moreover, the
“on” value in the PageMode field 224 also indicates that the
values established or to be established in the LBA/PageNum
field 226 and Sector Count/PageOffset field 228 are Page-
Num and PageOffset values and not LBA and SectorCount
values. The destage filter 370 uses data in the journal entry
headers 348 to populate the LBA/PageNum field 226,
Count/PageOffset field 228, LayerID field 242, StorelD field
246, and StoreL.BA field 248. The destage filter 370 uses
data in the journal entry headers 348 to establish values in
the NumberOfDataSegments field 236 and the DataSeg-
mentVector field 238. To elaborate, the destage filter 370
places the data from the journal blocks 351 into the memory
store (e.g., memory store 52A or 52B). The destage filter 370
places the number of data segments that are established in
the memory store into the NumberOfDataSegments field
236 and the address and length of each of the segments
established in the memory into the DataSegmentVector field
238. The destage filter 370 calculates a cyclic redundancy
check (CRC) for each of the segments and places each of the
CRC values in the DataCRCVector field 240. It should be
appreciated that a data verification techniques other that
CRC can be employed in place of CRC. The value of the
QoS Attributes field 244 is set to 0 or “lowest priority”. If the
values of the InitiatorID field 220, VolID field 222 Error-
Code field 232, ErrorOffset field 234, IssuerStack field 252,
and XtraContextStack field 254 are not automatically set to
“null” or irrelevant values when the IOB 182 is first estab-
lished, the destage filter 370 establishes such values in these
fields.

US 9,423,978 B2

43

The destage filter 370 also pushes an indication onto the
IssuerStack field 252 of the IOB 182 that the destage filter
370 needs to do additional processing when the IOB is
propagating up the filter stack 132.

The destage filter 370 also updates the Clean field 434 of
the JE for each journal entry that contributed one or more
blocks to the page to indicate that the data associated with
the journal entry is being destaged, e.g., is now the subject
of a super IOB that will result in the data being written to a
different data store.

With respect to each of the data blocks that formed a page
that is to be destaged, the destage filter 370 makes a
determination of whether or not to persist the data block on
the journal 340. In this regard, the destage filter 370 obtains
statistical data from the statistics database 168 for the layer
1D and layer LBA associated with the block. If the statistical
data indicates that the data block is not being frequently
read, the destage filter 370 removes the entry for the layer ID
and layer LBA in the journal table (e.g., journal table 352)
and updates Clean field 434 to indicate that the data block
has been evicted from the journal 340. This effectively frees
up the JE for the data block for use by the 1/O journal filter
282.

If the statistical data indicates that the data block is being
frequently read, the destage filter 370 makes a determination
as to whether to leave the data block in its current location
or compact the data block with other data blocks that are
being persisted. To make this determination, the destage
filter 370 assesses whether the journal page that contains the
data block is sparsely populated or not. If the journal page
is sparsely populated and there is at least one other data
block associated with another sparsely populated journal
page, the destage filter 370 compacts the two data blocks
into one journal page, thereby freeing up one journal page
for use by the 1/0 journal filter 282. If the journal page is not
sparsely populated, the data block is allowed to remain in its
current location in the journal 340.

If the destage filter 370 determines that: (a) a page could
not be assembled from the data blocks resident in the journal
340 when the destage filter 370 began processing the journal
340 (“unpageable data blocks™) or (b) the journal had data
blocks that could be assembled into a page (“pageable data
blocks™) and unpageable data blocks, the destage filter 370
processes each of the unpageable data blocks in the journal
to assess how long the data block has been resident in the
journal 340. In this regard, the destage filter 370 obtains the
current time, obtains the “write” time from TimeSeqID field
428 for the layer ID and the layer LBA that relates to the data
block to determine when the data block was written into the
journal 340, and determines the difference between the
current time and the “write” time.

If the time difference exceeds a threshold, the destage
filter 370 creates an IOB (not a super IOB) for the data block
and any contiguous data blocks in a similar fashion to that
noted for the super IOB but with a PageMode value set to
“off” and passes the IOB on down the filter stack 132.
Additionally, the destage filter 370 makes a determination of
whether or not to persist the data block on the journal 340.
In this regard, the destage filter 370 obtains statistical data
from the statistics database 168 for the layer 1D and layer
LBA associated with the block. If the statistical data indi-
cates that the data block is not being frequently read, the
destage filter 370 removes the entry for the layer ID and
layer LBA in the journal table (e.g., journal table 352) and
updates Clean field 434 to indicate that the data block has
been evicted from the journal 340. This effectively frees up
the JE for the data block for use by the 1/O journal filter 282.

5

10

15

20

25

30

35

40

45

50

55

60

65

44

If the statistical data indicates that the data block is being
frequently read, the destage filter 370 makes a determination
as to whether to leave the data block in its current location
or compact the data block with other data blocks that are
being persisted. To make this determination, the destage
filter 370 assesses whether the journal page that contains the
data block is sparsely populated or not. If the journal page
is sparsely populated and there is at least one other data
block associated with another sparsely populated journal
page, the destage filter 370 compacts the two data blocks
into one journal page, thereby freeing up one journal page
for use by the 1/0O journal filter 282. If the journal page is not
sparsely populated, the data block is allowed to remain in its
current location in the journal 340.

If the difference between the write time and the current
time does not exceed a threshold, the destage filter 370
makes a determination as to whether to leave the data block
in its current location or compact the data block with other
data blocks that are being persisted. To make this determi-
nation, the destage filter 370 assesses whether the journal
page that contains the data block is sparsely populated or
not. If the journal page is sparsely populated and there is at
least one other data block associated with another sparsely
populated journal page, the destage filter 370 compacts the
two data blocks into one journal page, thereby freeing up
one journal page for use by the /O journal filter 282. If the
journal page is not sparsely populated, the data block is
allowed to remain in its current location in the journal 340.

The destage filter 370 queries the statistics database 168
to determine if the system has sufficient resources to process
the destage. If the system does have sufficient resources, the
destage filter 370 places an “In” time in the In Time Stamp
field 250 that reflects the point in time when or about when
the destage filter 370 passes the IOB 182 on down the filter
stack 132. If the system does not have resources to process
the destage IOB, then the destage filter pauses and then tries
the stats database query again.

Later, when a result IOB 182 is propagating up the filter
stack 132 and reaches the destage filter 370, the current time
is obtained, the “In” time stored in the In Time Stamp field
250 is obtained, and the total latency associated with the
processing of the IOB is calculated, e.g., the elapsed time
between when the “In” time value was obtained by the
destage filter 370 and the when the current time was
obtained. The destage filter 370 updates layer tables in the
statistics database 168 with the total latency value. Addi-
tionally, the destage filter 370 updates all JEs that corre-
spond to the result IOB setting the bitmask state to destage
complete.

When the destage filter 370 is invoked because there is an
IOB with a SCSI read-related command, the destage filter
370 passes the IOB on down the filter stack 132.

Advanced De-Duplication Filter. Generally, the advanced
de-duplication filter 372 operates to preserve storage capac-
ity at the primary data storage system 28 by preventing
blocks of data associated with a super IOB that are com-
monly written to the primary data storage system 28 and do
not have a readily calculable pattern from being written
multiple times such that each writing of the page consumes
additional storage capacity.

By way of background, the advanced de-duplication filter
372 maintains a super dictionary table that is capable of
holding a number of entries that is greater than the number
of entries that the dictionary table associated with the
dictionary deduplication filter 280 utilizes. Each non-null
entry in the super dictionary table includes, for a page
associated with a super IOB, a value for each of a cyclic

US 9,423,978 B2

45

redundancy check (CRC) for the page, a layer ID, PageNum,
a StorelD, and StoreLBA. The CRC is a number that is
calculated using the data in a page and representative of the
data in a page but not necessarily a unique number relative
to the data in the page, e.g., there is the possibility that two
pages with different data have the same CRC. Nonetheless,
if two pages of data do have the same CRC, there is a distinct
possibility that the two pages do have the same data. It
should be appreciated that hashes, checksums, and the like
can be used in lieu of a CRC to identify pages that have
potentially identical data.

With respect to the processing of a super 10B relating to
a write, the advanced deduplication filter 372 calculates a
CRC for the page located in a memory store (memory store
52A or 52B) due to the operation of the destage filter 370.
The advanced deduplication filter 372 enters the calculated
CRC value and the values from the LayerID field 242,

PageNum field 226, StoreID field 246, and Store.BA
field 248 in the super dictionary table. The advanced dedu-
plication filter 372 determines if there is another entry in the
super dictionary table that has the same CRC value, the same
value for the StorelD, and the value for the StorelD corre-
sponds to a memory store. Two entries in the super diction-
ary table with the same CRC value are potentially identical
pages. Two entries in the super dictionary table that also
each has a value for the StorelD that corresponds to a
memory store (which is a high speed memory) can be
compared to one another very quickly. The data associated
with the write IOB and the dictionary entry are both in
memory store 52A or 52B, the fastest type of store in the
illustrated system. If there is another entry in the super
dictionary table that has the same CRC value and a value for
the StorelD that corresponds to a memory store, the
advanced deduplication filter compares the two pages to one
another. If the two pages are identical, the advanced dedu-
plication filter 372 changes the value in the command field
230 of the super IOB from a write to a de-dup write, adjusts
the values in the StorelD field 246 and StoreLBA field 248,
and passes the super IOB on down the filter stack 132.

Further, the advanced deduplication filter 372 increments
apage counter that is used to determine whether the identical
page is being written commonly or frequently enough to
warrant identifying the page as being appropriate for use in
the dictionary table used by the dictionary deduplication
filter 280 in the group of foreground filters 162. If the page
satisfies the test for inclusion in the dictionary table, the
advanced deduplication filter obtains the portion of the page
(e.g., the second 64-bytes in the page) that is associated with
each of the non-null entries in the dictionary table. If the
portion of the page is unique relative to each of the portions
of the pages associated with the other entries, the page is
added to the dictionary table. Further, if the dictionary table
is full, the entry with the oldest access time (obtained from
the statistic database 168) is deleted to make room for the
new entry. If the portion of the page is not unique relative to
each of the portions of the pages associated with the other
entries in the dictionary table, the advanced deduplication
filter 372 operates to identify a portion of each of the pages
in the dictionary table that is unique and updates the entire
dictionary table accordingly. If a portion of each of the pages
in the dictionary table that is unique cannot be identified, the
page is not added to the dictionary table.

If the two pages are not identical, the advanced dedupli-
cation filter 372 proceeds to assess the impact of considering
whether other entries in the super dictionary table having the
same CRC are duplicates of the page associated with the
super I0OB. Specifically, the advanced deduplication filter

10

15

20

25

30

35

40

45

50

55

60

65

46

372 queries the statistics database 168 to determine if the
QoS goals are currently being achieved or nearly achieved
(a “headroom” calculation). If the impact is acceptable, the
advanced deduplication filter 372 causes the page that is at
the location identified by the values in the StoreIlD and
Store[LBA fields in the super dictionary table to be read into
a memory store for comparison to the page associated with
the super IOB currently in the memory store. Since the page
associated with the super IOB and the potentially identical
page are now both in memory, the comparison proceeds in
substantially the same fashion as described above when the
two pages were both in memory store when the processing
of the super IOB by the advanced deduplication filter 372
began. If the impact is not acceptable, the advanced dedu-
plication filter 372 passes the super IOB on down the filter
stack 132. If there is no entry in the super dictionary table
that has the same CRC, the advanced deduplication filter 372
passes the super IOB on down the filter stack 132.

With respect to an IOB with a SCSI write-related com-
mand that does not relate to a page, the advanced dedupli-
cation filter 372 deletes the entry in the super dictionary
table that has the layer ID and the PageNum values set forth
in the IOB. The entry is deleted because the write command
associated with the IOB will be subsequently executed and
likely change the CRC for the page with which the data
block(s) that are the subject of the write command are
associated. As such, the current CRC for the page will no
longer be valid and useable for assessing whether there is a
page that is the subject of a super IOB should be dedupli-
cated. Further, the advanced deduplication filter 372 passes
the IOB on down the filter stack 132.

Read De-Duplication Operation. Generally, the advanced
deduplication filter 372 operates on an IOB having a SCSI
read-related command that need not relate to a page to
determine if the data associated with the identified layer id
and LBA is data that has been previously de-duplicated in
the processing of an IOB with a SCSI write-related com-
mand relating to the same layer id and LBA. More specifi-
cally, the advanced deduplication filter 372 obtains the value
in the StorelD field 246 and determines if the value is
currently associated with the dictionary store 322. If the
value is currently associated with the dictionary store 322,
the advanced deduplication filter 372 then places the data
from the dictionary store 322 into the memory store (e.g.,
memory store 52A or 52B). The advanced deduplication
filter 372 places the number of data segments that are
established in the memory store into the NumberOfDataSeg-
ments field 236 and the address and length of each of the
segments established in the memory into the DataSegment-
Vector field 238. Further, the advanced deduplication filter
372 updates the value in the DataSegmentVector field to
point to the address in the memory store (e.g., memory store
52A or 52B) that has the copy of the dictionary page and,
more specifically, to point the first block of the page that has
the first block to which the SCSI read command relates.
Further, the advanced deduplication filter 372 places a
“success” code in the error field 232 and causes the IOB to
start propagating up the filter stack 132, thereby indicating
that the SCSI read-related command of the IOB has been
completed. If the value in the StorelD field 246 is not
currently associated with the dictionary store 322, the IOB
is passed down the filter stack 132 for further processing.

Page Pool Filter. Generally, the page pool filter 374
operates to allocate storage space on the stores associated
with the primary data storage system 28 other than a store
that is non-persistent and any portion of a store that is not
dedicated to a journal as needed. More specifically, the page

US 9,423,978 B2

47

pool filter 374 maintains a store map for each store for which
the filter can allocate storage that identifies all of the storage
pages on the store and indicates whether or not each such
storage page has been allocated. Additionally, the page pool
filter 374 maintains a layer-store table 410 with each entry
in the table mapping a layer ID and layer LBA to a StorelD
and StoreLBA. The table also indicates whether the data at
a particular StorelD and Store[LBA is shared by more than
one layer ID, layer LBA. This indication is referred to as a
ref-count, with a ref-count of 1 indicating that the data at the
location specified by the StorelD and Store[LBA is only
associated with one layer ID, layer LBA. A ref-count that is
greater than 1 indicates that the data at the location specified
by the StorelD and Store LBA is associated with more than
one layer 1D, layerL.BA.

With the foregoing background in mind, the page pool
filter 374 operates on a received IOB to determine if the
received IOB is an 1OB or a super IOB. More specifically,
the page pool filter 374 obtains the value in the PageMode
field 224 of the received IOB. If the value is “yes”, the
received 1OB is a super IOB, e.g., embodies a write-related
command that involves a page of data.

With respect to a super 1OB, the page pool filter 374
determines whether the command in the command field 230
is a write command or a dedup write command. If the
command is a write command, the page pool filter 374
obtains the values in the LayerID field 242 and the LBA/
PageNum field 226 and determines whether there is an entry
in the layerstore table 410. If there is no entry in the
layer-store table 410 with the specified layer ID and layer
LBA values, the page of data for the specified layer ID and
layer LBA has not been previously written to any of the
stores for which the page pool filter 374 allocates space. In
this case, the page pool filter 374 interrogates the store
map(s) to identify a page of space on the related store to
which the page of data can be efficiently written. With
respect to an identified page, the page pool filter 374
determines the values for the StorelD and StoreLBA. The
page pool filter 374 allocates the page to the layer ID and
layer LBA. In this regard, the page pool filter 374 updates
the layer-store table to include an entry with the values for
the layer ID, layer LBA, StorelD and Storel.BA and stores
the updated store map. Further, the page pool filter 374 sets
the ref-count field in the entry to 1 to indicate that the data
to be established beginning at the location specified by the
StoreID and Storel.BA values is currently associated with
only one layer ID and layer LBA. The page pool filter 374
updates the StorelD field 246 and Store[.LBA field 248 in the
1OB with the StorelD and StoreL.BA values of the allocated
storage. The updated super IOB is then passed down the
filter stack 132.

If there is an entry in the layer-store table 410 with the
specified layer ID and layer LBA values, data associated
with the specified layer ID and layer LBA has been previ-
ously written to a store. With respect to such data, the page
pool filter 374 determines if the data is shared, e.g., asso-
ciated with another layer ID and layer LBA values. In this
regard, the page pool filter 374 determines if the ref-count
field in the entry in the layer-store table 410 for the layer ID
and layer LBA in the super IOB is 1. If the ref-count is 1, the
data at the location specified by the StorelD and StoreLBA
values in the table is not shared. In this case, the values for
the StorelD and Store[.BA in the table are respectively
loaded into the StorelD field 246 and StoreLBA field 248.
The updated super IOB is then passed on down the filter
stack 132.

10

15

20

25

30

35

40

45

50

55

60

65

48

If the ref-count is greater than 1, the data at the location
specified by the StoreID and Store[LBA for the entry in the
layer-store table 410 is shared with at least one other layer
ID and layer LBA. In this case, because the data at the
location is shared and the IOB involves the writing of data
that is different than the data currently at the location, the
page pool filter 374 must allocate new space on a store for
the page of data associated with the super IOB. In this
regard, the page pool filter 374 proceeds substantially as
noted with respect to the situation in which there was no
entry in the layer-store table 410 with the specified layer ID
and layer LBA values. Further, the page pool filter 374 also
decrements the ref-counts.

If the command in the command field 230 of the super
IOB is a dedup write, the page pool filter 374 establishes a
new entry in the layer-store table 410 and populates the entry
with the values from the LayerID field 242, LBA/PageNum
226 field 226, StorelD field 246, and the StoreLBA field 248
from the super IOB. In this instance, the values in the
StoreID field 246 and the Storel.BA field 248 were previ-
ously established by the advanced deduplication filter 372.
Further, the page pool filter 374 identifies the other entries
in the layer-store table 410 that have the same value for the
StoreID and StoreL BA. With respect to each of these entries
in the layer-store table 410 the ref-count value is incre-
mented. The page pool filter 374 also establishes this incre-
mented ref-count value in the new entry in the layerstore
filter. The processing with respect to this super IOB is now
complete. Consequently, the page pool filter 374 places a
“success” code in the error code field 232 and causes the
IOB to start propagating up the filter stack 132.

If the received IOB is not a super IOB, the page pool filter
374 determines whether the command in the command field
230 is a write command or a read command. If the command
is a write command, the page pool filter 374 obtains the
values in the LayerID field 242 and the LBA/PageNum field
226 and determines whether there is an entry in the layer-
store table 410. If there is no entry in the layer-store table
410 with the specified layer ID and layer LBA values, the
block(s) of data for the specified layer ID and layer LBA has
not been previously written to any of the stores for which the
page pool filter 374 allocates space. In this case, the page
pool filter 374 interrogates the store map(s) to identify a
page of space on the related store to which the block(s) of
data can be efficiently written. With respect to an identified
page, the page pool filter 374 determines the values for the
StoreID and StoreLBA. The page pool filter 374 allocates
the page to the layer ID and layer LBA. In this regard, the
page pool filter 374 updates the layer-store table 410 to
include an entry with the values for the layer ID, layer LBA,
StoreID and Store[.BA and stores the updated store map.
Further, the page pool filter 374 sets the ref-count field in the
entry to 1 to indicate that the data to be established begin-
ning at the location specified by the StorelD and StoreL BA
values is currently associated with only one layer ID and
layer LBA. The page pool filter 374 updates the StorelD
field 246 and StoreLBA field 248 in the IOB with the
StoreID and StoreLBA values of the allocated storage. The
update IOB is then passed down the filter stack 132.

If there is an entry in the layer-store table 410 with the
specified layer ID and layer LBA values, data associated
with the specified layer ID and layer LBA has been previ-
ously written to a store. With respect to such data, the page
pool filter 374 determines if the data is shared, e.g., asso-
ciated with another layer ID and layer LBA. In this regard,
the page pool filter 374 determines if the ref-count field in
the entry in the layer-store table 410 for the layer ID and

US 9,423,978 B2

49

layer LBA in the IOB is 1. If the ref-count is 1, the data at
the location specified by the StorelD and Store[LBA values
in the layer-store table 410 is not shared. In this case, the
values for the StorelD and StoreLBA in the layer-store table
410 are respectively loaded into the StorelD field 246 and
Store[LBA field 248. The super 1OB is then passed on down
the filter stack 132.

If the ref-count is greater than 1, the data at the location
specified by the StorelD and Store[LBA for the entry in the
layer-store table 410 is shared with at least one other layer
ID and layer LBA. In this case, because the data at the
location is shared and the IOB involves the writing of data
that is different than the data currently at the location, the
page pool filter 374 must allocate new space on a store for
the page of data associated with the super IOB. Moreover,
because the writing to the store is page-based and not
block-based at this point and the IOB relates to a block(s)
and not a page, the page pool filter 374 must build the page
that is to be written to the newly allocated space. Conse-
quently, the page pool filter 374 reads the page that is at the
location specified by the current StoreID and StoreL.BA in
the layer-store table 410 into a memory store (e.g., memory
stores 52A or 52B) and modifies the page to include the
block(s) that are associated with the IOB. The page pool
filter 374 establishes a new entry in the layer-store table 410
and enters the values from the LayerID field 242 and
LBA/PageNum field 226 of the IOB into the new entry in the
table. Further, the StoreIlD and StoreLBA values for the
newly allocated space are also placed in the new entry. The
ref-count for the new entry is set to 1 to indicate that the page
is not shared with any other layer ID and layer LBA. The
page pool filter 374 updates the values of the StorelID field
246 and the Store[.BA field 248 in the IOB to reflect the
StoreID and Storel.BA for the newly allocated space. Fur-
ther, the page pool filter 374 updates the DataSegmentVector
240 in the IOB to indicate the location of the modified page
in the memory store. The updated IOB is then passed down
the filter stack 132.

If the command is a read command, the page pool filter
374 uses the values from the LayerID field 242 and the
LBA/PageNum field 226 to identify the entry in the layer-
store table 410 that relates to the data that is to be read. In
this regard, the value in the LBA/PageNum field 226 relates
to an LBA and not a page. The page pool filter 374
accomplishes the conversion by masking off certain bits of
the LBA value. The layer ID and PageNum values are then
used to identify the entry in the layer-store table 410 relating
to the data that is the subject of the read command. The page
pool filter 374 retrieves the values for the StorelD and
Store[.LBA associated with the entry in the layer-store table
410 and loads these values into the StorelD field 246 and
Store[.LBA fields 248 of the IOB. The updated IOB is then
passed down the filter stack 132.

Store Converter Filter. Generally, the store converter filter
376 processes super IOBs and IOBs so as to generate an
element specific IOB(s), e.g., the command(s) that are
needed to actually perform the read or write of the data
associated with the super IOB or IOB. To elaborate, a
particular store has data transfer requirements, a data redun-
dancy attribute, and a path redundancy attribute. The store
converter filter 376 processes super IOBs and IOBs to
produce the element specific IOB(s) with the command(s) to
the store that satisfy the data transfer requirements of the
store, preserve the data redundancy attribute of the store, and
preserve the path redundancy attribute of the store.

Write Data Transfer—Size. With respect to super 10OBs
and IOBs that have SCSI write-related commands, the store

5

10

15

20

25

30

40

45

50

55

60

65

50

converter filter 376 interrogates a store table to obtain the
size of a write-related data transfer that the store accommo-
dates. If the size of the data transfer accommodated by the
store is equal to a page, the store converter filter 376
generates the element specific IOB with the command(s)
necessary to write the page of data associated with the super
1OB to the store.

With respect to a super IOB with a write-related com-
mand, if the size of the data transfer accommodated by the
store is greater than a page, the store converter filter 376
generates the element specific IOB(s) with the command(s)
necessary to: (a) read the current greater portion of data that
is on the store and that includes the location at which the
page is to be written, (b) modify the read current greater
portion of data to include the page of data associated with
the super IOB, and (c) write the modified greater portion of
data to the store. For example, if the store requires that write
data transfers be done in 4-megabyte chunks, the store
converter filter 376 generates the commands necessary to:
(a) read the current 4 megabyte chunk of data on the store
that includes the location at which the page associated with
the super IOB is to be written, (b) modify the read 4-mega-
byte chunk to include the page associated with the super
IOB, and (c) write the modified 4-megabyte chunk to the
store.

Conversely, if the size of data transfer accommodated by
the store is less than a page, the store converter filter 376
divides the page of data associated with the super IOB into
whatever size chunks of data are required by the store and
generates the element specific IOB(s) with the command(s)
for transferring these chunks of data to the store. For
instance, if a store requires that data to be written in 512-byte
chunks, the store converter filter 378 divides the 2-megabyte
page associated with the super IOB into 4096 512-byte
chunks and generates the command(s) for writing each of
the 4096 512-byte chunks to the store.

If the size of data transfer accommodated by a store is
greater than a page but not a whole number multiple of a
page, the store converter filter 376: (a) divides the page into
one or more chunks of the size required by the store and
generates the command(s) for writing each of these chunks
to the store and (b) with respect to the remaining data that
is less than the size of data transfer accommodated by the
store, produces the read, modify, write commands previ-
ously described for writing the data to the store.

With respect to an IOB with a SCSI write-related com-
mand, the store converter filter 376 operates in substantially
the same fashion as noted with respect to a super 10B,
except that the size of the block or blocks of data that are the
subject of the IOB rather than a page are compared to the
size of the data transfer accommodated by the store.

Write—Data Redundancy. The store converter filter 376
also interrogates the store table to determine the value of the
data redundancy attribute associated with the store, performs
any calculations that are associated with satisfying this
attribute for the store, and generates or modifies the element
specific IOB so as to implement the data redundancy. For
example, if a store is comprised of a RAID-6 element, the
store converter filter 376 engages in the parity calculations
that are needed for use with a store that includes such an
element and modifies the element specific IOB accordingly.
As another example, if the store includes two elements that
are mirrored to provide data redundancy, the store converter
filter 376 modifies the element specific IOB to include the
command(s) needed for implementing the mirroring.

Write—Path Redundancy. The store converter filter 376
further interrogates the store table to determine the value of

US 9,423,978 B2

51

the path redundancy attribute associated with the store. In
addition, the store converter filter 376 interrogates a con-
figuration table for the primary data storage system 28 that
provides the physical layout of the level and the character-
istics of the various elements at the level. For example, the
configuration table identifies each store, the number of 1/O
ports associated with each store, the status of the ports,
identifies the switches in the store and the status of the
switches etc. The store converter filter 376 generates or
modifies the element specific IOB to provide the necessary
information for routing the data from its current location in
the primary data storage system 28 (e.g., the memory store)
to the store.

Write—FElement Specific IOB. With respect to either an
1IOB or a super IOB with a SCSI write-related command,
once the assembly of the element specific IOB is complete,
the store converter filter 376 pushes an indication onto the
IssuerStack field 252 that the store converter filter 376 needs
to conduct further processing of the super IOB or 1OB after
the execution or attempted execution of the commands in the
element specific IOB is complete. The store converter filter
376 passes the element specific IOB on down the filter stack
132.

Read Data Transfer—Size. With respect to an IOB with a
SCSI read-related command, the store converter filter 376
interrogates a store table to obtain the size of a read-related
data transfer that the store accommodates. If the size of the
read data transfer accommodated by the store is equal to the
size of the data that is the subject of the IOB, the store
converter filter 376 generates the element specific IOB with
the command(s) necessary to read the data associated with
the IOB from the store.

If the size of a data transfer accommodated by the store is
greater than size of the data that is the subject of the IOB,
the store converter filter 376 generates the element specific
IOB with the command(s) necessary to read the current
greater portion of data that is on the store and that includes
the location with the data that is the subject of the IOB into
the memory store. The store converter filter 376 then updates
the value in the DataSegmentVector field to point to the
address in the memory store (e.g., memory store 52A or
52B) that has the copy of the page and, more specifically, to
point the first block of the page that has the first block to
which the SCSI read command relates.

If the size of data transfer accommodated by the store is
less than the size of the data associated with the IOB, the
store converter filter 376 determines the number of data
transfers that will be necessary to transfer data of the size
specified in the IOB and generates the element specific
10B(s) with the command(s) for conducting the calculated
number of reads from the store.

If the size of a data transfer accommodated by a store is
less than the size of the data associated with the IOB but not
a whole number multiple of a size of the data, the store
converter filter 376: (a) determines the number of data
transfers that will be necessary to transfer data of the size
specified in the IOB and generates the element specific
10B(s) with the command(s) for conducting the calculated
number of reads from the store and (b) with respect to the
remaining data that is less than the size of data transfer
accommodated by the store, generates or modifies the ele-
ment specific IOB to include the command(s) necessary to
read the portion of data that is on the store that is of a greater
size than the remaining data but includes the location with
the remaining data.

10

15

20

25

30

35

40

45

50

55

60

65

52

Read—Data and Path Redundancy. The store converter
filter 376 accesses a hardware state table to determine which
path(s) and element(s) to which the element specific IOB
should be sent.

Read—FElement Specific IOB. With respect to either an
IOB or a super IOB with a SCSI read-related command,
once the assembly of the element specific IOB is complete,
the store converter filter 376 pushes an indication onto the
IssuerStack field 252 that the store converter filter 376 needs
to conduct further processing of the super IOB or IOB after
the execution or attempted execution of the commands in the
element specific IOB is complete. The store converter filter
376 passes the element specific IOB on down the filter stack
132.

Later, when a result IOB 182 is propagating up the filter
stack 132 and reaches the store converter filter 376, the store
converter filter 376 updates store hardware stats tables in the
statistics database 168 with the latency value, throughput,
queue depth, and use count. It should be appreciated that
other tables or statistics in the statistics database 168 may
also be updated.

Store Stats Collection Filter. Generally, the store stats
collection filter 378 operates to collect certain store and
element related data/statistical information for each 10B
passed to the store stats collection filter 378 from the store
convertor filter 376 when the IOB is going down the filter
stack 132. To elaborate with respect to IOB 182, the store
stats collection filter 378 processes the IOB 182 to obtain the
store id from the Storeld field 246, the element id from the
ElementID field 256, the sector count from the SectorCount/
PageOffset field 228, and the “In” time stamp value from the
In Time Stamp field 250. The store stats collection filter 378
also obtains the current time from the operating system. The
store stats collection filter 378 uses the value of the “In”
Time Stamp and the current time to calculate the latency that
the IOB has experienced between when the “In” Time Stamp
value was established in the destage filter 370 and when the
current time is obtained by the store stats collection filter 378
(hereinafter referred as “first latency”). The store stats
collection filter 378 communicates with the statistics data-
base 168 so as to: (a) update a table for the store that is
maintained in the database to reflect that an IOB associated
with the store will be processed that has the sector size
obtained from the IOB and that the IOB has experienced the
calculated first latency and (b) update a table for the element
that is maintained in the database to reflect that an IOB
associated with the element will be processed that has the
sector size obtained from the IOB and that the IOB has
experienced the calculated first latency.

The store stats collection filter 378 also pushes an indi-
cation onto the IssuerStack field 252 of the IOB 182 that the
store stats collection filter 378 needs to do additional pro-
cessing when the IOB is propagating up the filter stack 132.
Further, the store stats collection filter 378 also pushes the
current time onto the XtraContextStack field 254.

Later, when the IOB 182 is propagating up the filter stack
132 and reaches the store stats collection filter 378, the store
stats collection filter 378 obtains the time from the Xtra-
ContextStack field 254 (which is no longer the current time),
obtains the “new” current time, and calculates a second
latency, e.g., the elapsed time between when the time value
was obtained that was pushed onto the XtraContextStack
field 254 and the IOB was propagating down the filter stack
132 and the when the “new” current time was obtained. The
store stats collection filter 378 updates the store and element
tables in the statistics database 168 with the second latency
value.

US 9,423,978 B2

53

Storage Hardware Driver. Generally, the storage hardware
driver 380 controls a SCSI card so as to produce the
electrical signals needed to receive a message, such as SCSI
block result, and transmit a message, such as a SCSI block
request. The storage hardware driver 380 assures the
addressing of packets associated with a message. With
respect to received packets, the storage hardware driver 380
confirms that each of the received messages does, in fact,
belong to the SCSI card. With respect to messages that are
to be transmitted, the storage hardware driver 380 assures
that the each message is appropriately addressed so that the
message gets to the desired element. With respect to a
received message, the storage hardware driver 380 also
recognizes the packet as requiring further routing back up
the filter stack 132. The storage hardware driver 380 also
performs other processing in accordance with the protocols,
e.g., ordering packets, checksum etc.

It should be appreciated that the storage hardware driver
380, operates to process block commands, e.g., commands
that relate to the reading of a block data from or writing of
a block data to a storage medium. As such, the storage
hardware driver 380 can be adapted to operate with storage
hardware other that SCSI cards.

It should be appreciated that a number of functions noted
with respect to the primary data storage system 28 can be
realized with a primary data storage system having a single
storage processor and a single data store and primary data
storage systems having more elements than noted with
respect to the primary data storage system 28. For example,
the tiering function described with respect to 1/O journal
filter and the destage filter can be practiced in a primary data
system with two data stores having different performance
characteristics. The QoS function described with respect to
the QoS filter can be practiced in a primary data storage
system that has a single data store where there are two are
more volumes associated with the store. The de-duplication
function can be practiced in a primary data storage system
with a single data store. It should also be appreciated that the
redundancy described with respect to the primary data
storage system 28 is not required to practice many of the
functions provided by the filters in the filter stack. It should
also be appreciated that a primary data storage system can
employ a filter stack with a fewer number or greater number
of filters than are in the filter stack 132. For instance, in a
primary data storage system that is only going to service a
single volume, a filter stack can be employed that omits a
QoS filter. Additionally, a filter stack can be employed in
which the order of filters in the stack are different than in
filter stack 132. For instance, a filter stack could be
employed in which an I/O journal filter preceded a diction-
ary deduplication filter.

Tier and Tiering. A tier is a group of stores that have
similar characteristics such as throughput, latency, capacity,
path redundancy, data redundancy, and atomic block size
(e.g., the smallest individually addressable block of a store)
or a store with a defined set of such characteristics. For
example, memory store 52A and 52B comprise a tier, RAID
disk array 56 A and 56B comprise a different tier, and SSDs
54A and 54B comprise yet another tier. One tier can differ
from another tier in one characteristic or multiple charac-
teristics. For instance, a particular tier may have specific
latency and throughput characteristics while another tier
may have the same latency but a different throughput
characteristic.

10

15

20

25

30

35

40

45

50

55

60

65

54

A tiering storage system is a storage system that attempts
to match the access pattern relating to a block of data in the
system to the tier having the most appropriate or compatible
characteristics.

Many of the filters in the filter stack 132 are involved in
providing tiering functionality, e.g., the QoS filter 274, the
pattern de-duplication filter 278, the dictionary deduplica-
tion filter 280, the I/O journal filter 282, the destage filter
370, the advanced deduplication filter 372, the page pool
filter 374, the calculation engine 320, the dictionary store
322, and the statistics database 168.

The QoS filter 274 evaluates an IOB and volume, criti-
cality, and hardware statistics from the statistics database
168 to determine the most compatible and available tier(s)
for the blocks of data relating to an IOB. The QoS filter 274
updates the AllowedStores field 260B of the IOB with the
identified tier(s). It should be appreciated that the Allowed-
Stores field 260B can be implemented as a bitmask and the
QoS filter 274 can indicate in the bitmask that an IOB should
skip a tier. For example, in the case of a very large write data
related command, the QoS filter 274 might indicate that the
write data associated with the JOB be written to the RAID
disk array 56A or 56B instead of the SSDs 54A or 54B,
which are in a higher tier than the RAID disk arrays 56A,
56B.

The pattern de-duplication filter 278 and the calculation
engine 320 implement a tier-1 (the fastest tier, but with a
limited capacity) functionality in the illustrated primary data
storage system 28. The pattern de-duplication filter 278
operates to identify and respond to IOBs that contain blocks
of data capable of being stored or retrieved from the calcu-
lation engine 320 or other similar engines. The calculation
engine 320 provides a CPU store for storing and retrieving
blocks of data that are readily calculable. The calculation
engine 320 is implemented by using a CPU and a limited
amount of high speed memory to store and retrieve blocks
of data. The calculation engine has a block size character-
istic of 512 bytes (the smallest of any tier). The calculation
engine 320 has the lowest latency and highest bandwidth of
the stores illustrated. It should be appreciated that the
calculation engine 320 could be realized using specialized
hardware such as a DMA engine or an MMX processor.

The dictionary de-duplication filter 280 and the dictionary
store 322 implement a tier-2 (slower than tier-1 but with
greater capacity than tier-1) functionality. The dictionary
de-duplication filter 280 operates to identify and respond to
IOBs that contain blocks of data that are identical to the
blocks of data stored in the dictionary store 322. The
dictionary store 322 provides a dictionary table and a
memory store 52A or 52B for storing and retrieving blocks
of data which are not readily calculable. The dictionary store
322 has a block size characteristic of 2 MB.

The 1/O journal filter 282 and the SSDs 54A and 54B
implement a tier-3 (slower than tier-2 but with greater
capacity than tier-2) functionality. The I/O journal filter 282
operates to identify and respond to IOBs that the filters
above in the filter stack 132 have not fully processed. The
1/0O journal filter 282 stores blocks of data to and retrieve
blocks of data from the SSDs 54 A and 54B based upon the
characteristics of the SSDs 54A and 54B (e.g. atomic block
size, performance, throughput, IOPs, persistence, and redun-
dancy). The SSDs 54A and 54B each provide a persistent
store for storing blocks of data. The SSDs 54 A and 54B each
have an atomic block size characteristic of 4 KB.

The destage filter 370 is responsible for movement of
blocks of data between two tiers. The destage filter 370
decides when blocks of data relating to an IOB should be

US 9,423,978 B2

5§

copied, moved, or cleared relative to multiple tiers (in the
illustrated system 28, the tier-3 SSDs 54 A or 54B and the
tier-4 RAID disk array 56A or 56B). The destage filter 370
uses the characteristics of the source and destination tiers to
accommodate the different tier requirements. For example,
the SSDs 54 A and 54B require atomic block accesses to be
4 KB in size while the RAID disk array 56 A and 56B require
atomic block accesses to be 2 MB (page size). Thus, destage
filter 370 executes a multitude of reads from the SSDs 54A
or 54B in 4 KB chunks that coalesce in high speed memory
until 2 MB have been read. The destage filter 370 then
executes a write command to the RAID disk array 56A or
56B with the 2 MB that is now in high speed memory.
Likewise, the destage filter 370 evaluates other characteris-
tics of the various stores and accommodates the character-
istic strengths and attempts to avoid the characteristic weak-
nesses. For example, the RAID disk array 56A or 56B has
a seek penalty. Due to this penalty, the destage filter 370
processes 10Bs in a fashion to limit or reduce this seek
penalty impact. The ability of destage filter 370 to accom-
modate various characteristics of different stores enables
more efficient use of resources. For example, the atomic
block size of the SSDs 54A and 54B is smaller than the
atomic block size of the RAID disk array 56 A or 56B which
allows the SSDs 54A and 54B to contain smaller segments
of more frequently accessed blocks of data and not require
the SSDs 54A and 54B to hold blocks of data that are
adjacent to the frequently accessed blocks of data. In effect
this is more efficient use of the SSDs 54A and 54B.

The destage filter 370 can also copy blocks of data
between tiers so as to maintain a block of data in multiple
tiers and thus increasing redundancy associated with the
block of data. This also allows the block of data that is
located in multiple tiers to be “fast reused”. Fast reuse
occurs when a tier includes a copy of a block(s) (e.g., there
is another copy in another tier) and it is necessary to make
space in the tier for a block or blocks of data associated with
a different IOB command. In this case, the copy of the
block(s) in the tier can be deleted/written over to make space
for the block(s) associated with the different IOB command.

The destage filter 370 endeavors to match a block or
blocks of related data to the tier that is appropriate for the
access pattern associated with the block or blocks of related
data. To accomplish this, the destage filter 370 accesses the
statistics database 168 to acquire historical statistics related
to the volume with which the data block or related data
blocks are associated and evaluates those statistics to detect
trends in the access pattern. For example, if the initiator
access pattern is a streaming video (a trend represented by
a sequence of consecutive 10Bs), the destage filter 370
would likely direct the blocks of data to the tier containing
the RAID disk array 56A or 56B because the RAID disk
array 56A or 56B is more efficient than other tiers in
processing large, contiguous blocks of data. In contrast, if
the initiator access pattern is a random read, the destage filter
370 endeavors to maintain the blocks of data in a tier such
as SSDs 54A and 54B because this tier has a smaller seek
latency penalty relative to the other tiers in the system.

The advanced de-duplication filter 372 provides move-
ment of blocks of data between tier-4 and tier-2. More
specifically, advanced de-duplication filter 372 uses the
super dictionary table to determine when a group of con-
tiguous blocks of data that constitute a page is frequently
accessed. If a page is accessed more frequently than other
pages active in the dictionary table, then the advanced
de-duplication filter 372 identifies that page as a candidate
for movement to tier-2. The advanced de-duplication filter

10

15

20

25

30

35

40

45

50

55

60

65

56

372 subsequently coordinates with the dictionary de-dupli-
cation filter 280 to update the dictionary table with the
candidate page.

The page pool filter 374 and the RAID disk array 56A or
56B implement a tier 4 (slower than tier-3 but with greater
capacity than tier-3) functionality. The page pool filter 374
operates to store and retrieve blocks of data from RAID disk
array 56A and 56B considering the characteristics of RAID
disk array 56A and 56B.

It should be appreciated that tiering functionality can be
implement with other combinations of filters and stores. It
should also be appreciated that other filter stack 132 layouts
could generate different tier assignments than those listed
above. Additional storage types such as the cloud storage
provider 64 or tape stores would likely involve the filter
stack 132 adding additional filters or re-arranging the order
of the filters in such a way as to accommodate the charac-
teristics of any new tier employing one or more of these
types of stores. Further, as faster stores become available,
these faster stores can be used to implement a tier that is
faster than the memory that constitutes the tier-1 in the
illustrated system.

FIG. 9 depicts one embodiment of a management module
900. In general, the management module 900 may manage
or tune operations for the journal 340. In one embodiment,
the management module 900 may reorder IOBs or other
storage commands by storage volume, by snapshot version
or layer, or the like. The management module 900, in a
further embodiment, may adjust a frequency of writing data
from a write buffer (e.g., the volatile memory 52, an execu-
tion queue 314, or the like) based on a rate of write requests
or the like. The management module 900, in certain embodi-
ments, may adjust a ratio of storage capacity for storing
mirrored write data to storage capacity for storing non-
mirrored read data, in a data store 48 or the like (e.g., a
journal 340, a solid-state device 54, a hard disk drive 56, or
the like).

The management module 900, in certain embodiments,
may be part of or in communication with the filter stack 132
or the like. For example, the management module 900 may
comprise a foreground filter 162, a background filter 164, or
the like, may be part of or in communication with the 10
journal filter 282, the layer map filter 272, the destage filter
370, or the like. In the depicted embodiment, the manage-
ment module 900 includes a receiver module 902, an order
module 904, a buffer module 906, a journal module 908, a
destage module 910, and a region management module 912.

In one embodiment, the receiver module 902 is config-
ured to monitor and/or receive I0OBs or other storage com-
mands. As used herein, a storage command comprises a
request or message to perform a predefined action with
regard to data associated with the storage command and/or
a record of the predefined action once it has been performed.
A write command comprises a request, message, or record of
data to be written for a logical ID such as a logical identifier,
a range of logical identifiers, a file, an object, or the like. A
storage command (e.g., a write command, a read command,
or the like) may include metadata associated with the
command and/or data of the storage command, as described
above with regard to IOBs.

Metadata, as used herein, comprises information (e.g.,
control information, statistical information, labels, identifi-
ers, parameters, or the like) describing other data, such as a
storage command, data of a storage command, or the like.
Metadata may include a field or header of an iSCSI encap-
sulation packet 180, a field of an I0OB 182, QoS attributes
244, a volume ownership table 286, a volume information

US 9,423,978 B2

57

table 292, a journal page header 344, a journal entry header
348, a journal table 352, a layer store table 410, or the like.
In certain embodiments, an IOB, a journal page header 344,
a journal entry header 348, a journal table 352, or other
metadata for a storage command includes a marker or
indicator of an order of operations, such as a sequence
identifier, a timestamp, an ordered list, a monotonically
increasing number or value, or the like, such as the InTime-
Stamp 250 described above. In other embodiments, an order
of storage commands in a journal 340 may provide an order
of operations, without a separate marker or indicator. As
described in greater detail below, the order module 904 may
be configured to honor or enforce an order of operations for
storage commands for the same storage volume, for the
same snapshot or snapshot version, or the like, while reor-
dering storage commands for different storage volumes, for
different snapshots or snapshot versions, or the like.

A storage command such as a write command, a read
command, or the like, may include an IOB, a storage request
(e.g., a write request, a read request, a TRIM request), a
block command, a SCSI command, or the like. The receiver
module 902, in certain embodiments, may monitor a certain
type or types of storage commands, such as just write
requests, just read requests, write requests and read requests,
or the like.

The receiver module 902, in one embodiment, may moni-
tor and/or receive storage commands from a user computer
34, 36, an initiator 38, a storage client, an application, an
operating system, a uset, or the like. The storage commands
may be for different storage volumes, different snapshots,
different versions or layers of a snapshot, different quality of
service levels, or the like. The receiver module 902, in
certain embodiments, may monitor and/or determine a rate
at which storage commands are received, such as a rate at
which write requests are received, a rate at which read
requests are received, a rate at which read requests and write
requests are received, or the like. As described above, IOBs
or other storage commands and associated data may be
recorded or stored in a journal 340 data structure, stored in
a solid-state drive 54 or the like for later destaging to a hard
disk drive 56 or other backing store. The receiver module
902, in cooperation with the buffer module 906 or the like,
may buffer or store storage commands and/or associated
data in volatile memory 52, in an execution queue 314, or
the like, to group or gather multiple storage commands for
execution at once, as a write combine buffer or the like.

As used herein, a write combine buffer may comprise
volatile or non-volatile memory or storage used to queue,
buffer, or store multiple write commands and/or associated
data for writing or executing together, instead of separately.
The receiver module 902 and/or the buffer module 906, in
certain embodiments, may use a volatile memory 52, an
execution queue 314, volatile memory of a host device 34,
36, 38, or the like as a write combine buffer for a journal 340.
In a further embodiment, the journal module 908 may use a
journal 340, a solid-state storage device 54, or the like as a
write combine buffer for a hard disk drive 56 or the like. The
receiver module 902 and/or the buffer module 906, in certain
embodiments, may buffer or queue received write com-
mands or other storage commands in a time sequence order
(e.g., an order in which the write commands are received).

In one embodiment, the order module 904 adjusts, reor-
ders, or groups storage commands received, queued, and/or
buffered by the receiver module 902 and/or the buffer
module 906. The receiver module 902 may receive storage
commands in a sequential or chronological order, by time
(e.g., the original time sequence order described above). A

10

15

20

25

30

35

40

45

50

55

60

65

58

time sequence order for storage commands, as used herein,
comprises a chronological arrangement or sequence of stor-
age commands, in relation to each other, in which the storage
commands were sent and/or received. The order module 904
may change or rearrange the received storage commands out
of the sequential, chronological, time sequence order in
which the storage commands were received based on a
characteristic of the storage commands. As described above
with regard to the I/O journal filter 282, certain orders of
storage commands may have a data space and/or time speed
benefit for a data store 48. The order module 904 may adjust
an order, reorder, group, and/or rearrange storage commands
in an execution queue 314, in a volatile memory 52, in
another buffer, or the like so that the commands are executed
in the adjusted or rearranged order. In embodiments where
the volatile memory 52, the solid-state storage device 54,
and/or the hard disk drive 56 of a storage appliance or other
data store 48 are used as a write combine buffer, the order
module 904 may cooperate with the receiver module 902,
the buffer module 906, and/or the journal module 908 to
store data of the write commands in an adjusted order in a
write combine buffer of the storage appliance or other data
store 48.

In one embodiment, the order module 904 adjusts an
order, reorders, and/or groups storage commands based on
different storage volumes for the storage commands. For
example, the order module 904 may adjust an order of write
commands so that write commands directed to a common
storage volume are grouped together. As used herein, storage
commands are grouped in an order if the storage commands
and/or associated data have a predefined relationship in the
order. For example, two storage commands may be grouped,
in various embodiments, if the storage commands are adja-
cent in an order, if the storage commands are within a
predefined number of storage commands in an order, if the
storage commands or associated data are within the same
logical or physical unit in an order (e.g., a logical or physical
page), or the like.

Grouping or ordering storage commands and/or associ-
ated data by storage volume, in certain embodiments, may
have a data space and/or time speed benefit. For example,
the destage module 910 may destage data by storage vol-
ume. Without the order module 904, the destage module 910
may otherwise make multiple passes to gather data from a
storage volume for destaging. By ordering received data of
write commands (e.g., [OBs, write requests, or other storage
commands) by storage volume, the order module 904, in
certain embodiments, may reduce a number of passes or
iterations the destage module 910 takes to destage data, may
make destaging faster, more efficient, or the like. Further,
storage clients or other users 34, 36 may access data by
storage volume, and grouping storage commands and/or
associated data by storage volume may allow a data store 48
to more efficiently provide access by storage volume.

The order module 904, in certain embodiments, adjusts an
order or reorders storage commands based on different
snapshots, different versions of a snapshot, and/or different
layers of a snapshot, with which storage commands are
associated. As described above with regard to snapshots,
different snapshots, different versions and/or layers of snap-
shots, or the like may be associated with different time
periods for the same data, storage volume, logical address
range, or the like. The order module 904 may adjust an order
of write commands so that write commands directed to a
common snapshot and/or snapshot version are grouped
together. The order module 904, in one embodiment, by
grouping or ordering storage commands and/or associated

US 9,423,978 B2

59

data by snapshots and/or snapshot versions, may provide a
data space and/or time speed benefit. Storage clients or other
users 34, 36 may access data within the same snapshot or
snapshot version, the destage module 910 may destage date
by snapshot and/or by snapshot version, or the like, one or
more of which may be more efficient if the order module 904
groups, orders, and/or rearranges storage commands or
associated data by snapshot and/or by snapshot version.

In one embodiment, the order module 904 reorders and/or
adjusts an order of storage commands prior to the storage
commands or associated data being recorded in a journal
340. For example, the order module 904 may reorder and/or
adjust an order of storage commands in a volatile memory
52, an execution queue 314, or other buffer, may dynami-
cally reorder storage commands as they’re being sent or
written to a journal 340, or the like. Storage commands
and/or associated data, in one embodiment, may be stored in
a journal 340 preserved in one or more solid-state storage
devices 54 or other non-volatile storage media in an order
determined by the order module 904. In other embodiments,
the order module 904 may reorder storage commands and/or
associated data between another two tiers (e.g., for data
being destaged or moved between an SSD 54 and SAS 56,
between an SAS 56 and a backup server 62 or cloud storage
provider 64, or between other tiers).

The order module 904, in one embodiment, reorders or
groups storage commands and/or associated data based on
multiple factors. For example, the order module 904 may
order or group storage commands by storage volume and
within the storage commands for a storage volume may
group or order storage commands by snapshot and/or by
snapshot version. In a further embodiment, within storage
commands grouped by storage volume and/or by snapshot,
the order module 904 may group or order data by logical
address (e.g., LBA), or the like. Grouping or ordering
storage commands and/or associated data based on multiple
factors, in certain embodiments, may provide greater effi-
ciencies or other benefits than using a single factor.

While reordering storage commands (e.g., by storage
volume, by snapshot, or the like) the order module 904 may
maintain a time order or sequential order in which the
storage commands were received within each storage vol-
ume, snapshot, snapshot version, or the like. Maintaining an
order in which storage commands were received for each
storage volume (e.g., the time sequence order described
above), while rearranging storage commands for different
storage volumes, in certain embodiments, may provide
consistency of operations for each storage volume, while
providing the efficiencies or other benefits of rearranging
storage commands.

For example, by grouping storage commands by storage
volume, by snapshot and/or snapshot version, or the like, the
order module 904 may make it more likely that data from
different write commands for the same storage volume
and/or snapshot will be cached or stored in the same, single
page or other logical or physical unit of the journal 340,
allowing the data to be paged or loaded into volatile memory
52 at the same time in the single page (e.g., in response to
a read request), instead of paging or loading multiple dif-
ferent pages into volatile memory 52. For example, two
write commands received by the receiver module 902 with
more than a page of data of other write requests between
them, may be re-ordered or grouped and stored in the same,
single page. In response to a read request, the single page
may be loaded or paged into volatile memory 52 and read
requests for data of the two write commands may be satisfied
from the single page in memory 52. In this manner, a read

10

15

20

25

30

35

40

45

50

55

60

65

60

request for one block of data in a page of the journal 340
may cause the entire page to be loaded into volatile memory
52, where other blocks from the same page may be likely to
be read because the order module 904 has grouped the data
based on storage volume, snapshot and/or snapshot version,
or the like. By providing spatial locality for data with similar
characteristics (e.g., similar storage volume, similar snap-
shot or snapshot version, or the like), the order module 904
may provide more efficient paging or other data access to
data in a journal 340.

In one embodiment, the buffer module 906 is configured
to store or buffer storage commands and/or associated data.
The buffer module 906 may store or buffer storage com-
mands and/or associated data in volatile memory (e.g., the
volatile memory 52, an execution queue 314, volatile
memory of a computing device 34, 36, 38, 62, 64, or the
like). The buffer module 906, in one embodiment, may store
or buffer storage commands and/or associated data between
elements, at an input, and/or at an output of the filter stack
132. In a further embodiment, the buffer module 906 may
store or buffer storage commands and/or associated data
between tiers 22, 26, 24, 30, 28, 32 of a networked computer
system 20, or the like.

The buffer module 906, in certain embodiments, stores or
buffers storage commands and/or associated data in an order
determined by the order module 304. The order module 304
may reorder storage commands within a buffer of the buffer
module 906, as storage commands are being copied into a
buffer of the buffer module 906, as storage commands are
being copied out of a buffer of the buffer module 906, or the
like. In one embodiment, the buffer module 906 executes
storage commands in an adjusted order from the order
module 904 by storing or buffering the storage commands in
the adjusted order. In a further embodiment, the buffer
module 906 buffers storage commands and/or associated
data for recording or storing in a journal 340.

The buffer module 906, in one embodiment, may deter-
mine when to write, copy, destage, and/or move data from
a buffer to a non-volatile memory media (e.g., a journal 340,
a solid-state device 54, a hard disk drive 56, or the like). For
example, the buffer module 906 may write data in response
to receiving or buffering a predefined amount of data, filling
a buffer, filling a predefined portion of a buffer, or the like.
The buffer module 906, in certain embodiments, may deter-
mine a frequency with which data is written from a buffer to
anon-volatile storage device (e.g., a journal 340, a data store
48, a solid-state storage device 54, a hard disk drive 56, a
backup server 62, a cloud storage provider 64, or the like).
For example, in one embodiment, the buffer module 906
may increase a frequency with which data is written from a
buffer (e.g., a write buffer) in response to a rate at which
storage requests (e.g., write requests) are received decreas-
ing, may decrease the frequency in response to the rate
increasing, or the like.

By writing data from a buffer more frequently when the
buffer is filling more slowly (e.g., as write requests are
received less frequently), the buffer module 906 may ensure
that a latency is minimized, does not fall below a latency
threshold, satisfies a latency threshold, or the like. Other-
wise, in certain embodiments, latency for the buffered
storage commands may increase when few storage com-
mands are being received, while waiting for a buffer to fill
or the like. The buffer module 906 may force a buffer to
flush, even before the buffer is full, to maintain a certain
throughput, minimize a latency, satisfy a latency threshold,
or the like. The latency of a write command, in certain
embodiments, may be measured as a time between sending

US 9,423,978 B2

61

or receiving the write command and acknowledging comple-
tion of the write command. The buffer module 906 may
define a frequency of writing or flushing data from a write
buffer so that a latency for acknowledging completion of
multiple, buffered, write requests satisfies a latency thresh-
old, or the like.

If storage commands are received more frequently, the
buffer module 906 may decrease a frequency with which the
buffer is emptied or flushed (e.g., data is written from the
buffer to a non-volatile storage device), allowing more data
to be buffered or gathered at a time while storage commands
are being received. It may be counter intuitive to increase a
frequency of writing data from a write buffer in response to
a rate of write requests decreasing and to decrease the
frequency in response to a rate of write requests increasing.
However, the buffer module 906 may manage a frequency of
writing or flushing data of a write buffer in this manner to
maximize the benefits of combining write commands in a
buffer (e.g., a write combine buffer as described above)
without introducing an unacceptable amount of latency.

The buffer module 906, in certain embodiments, may use
multiple timers, multiple timer stages, or the like with
different time periods to determine when to flush a buffer,
write data from a buffer, or the like. For example, the buffer
module 906, in one embodiment, may use a two stage timer,
two timers, or the like. The buffer module 906, may reset a
first, shorter timer (e.g., wait longer to flush a buffer) if a
storage request, a predefined type of storage request (e.g., a
write request), or the like is received for the associated buffer
before the first timer expires. If no storage request, no
storage request of a predefined type (e.g., a write request)
has been received during the first timer (e.g., since the first
timer was started or reset), the buffer module 906 may flush
the buffer (e.g., write data of the buffer to a different
location, to a non-volatile storage device, or the like). In this
manner, if storage requests are being received, the buffer
module 906 may wait to gather more storage requests before
flushing the buffer, executing the storage requests, or the
like.

The buffer module 906, in one embodiment, may use a
second timer, that is longer than the first timer, as a fallback
or safeguard, and may flush the buffer (e.g., write data of the
buffer to another location, to a non-volatile storage device,
or the like) when the second timer expires, regardless of
whether or not storage requests have been received during
the second timer. The buffer module 906, by using the
second timer, with a longer time period or duration than the
first timer, in certain embodiments, may ensure that the
buffer is flushed at least as often as the period of the second
timer. In this manner, the buffer module 906 may buffer
storage commands, data of storage commands, or the like
before storing the data in a different location (e.g., a journal
340, a data store 48, a memory 52, a solid-state storage
device 54, a hard disk drive 56, or the like) in response to a
first timer expiring without receiving a subsequent storage
command, a second timer expiring, or the like. In other
embodiments, the buffer module 906 may use a different
method to manage a frequency of destaging or flushing data
from a buffer.

The buffer module 906, in certain embodiments, may
dynamically adjust or change a length or period for the first
timer and/or the second timer. For example, the buffer
module 906 may increase a time period of the first timer
based on an amount of data in the write buffer, increase a
time period of the first timer based on the rate of write
requests, decrease the time period of the first timer in
response to determining that no write requests have been

20

30

40

45

50

62

received since the first timer was set, adjust a time period for
a timer based on a speed (e.g., I/O operations per second
(IOPS)) of an SSD 54 (e.g., decrease a time period of the
first and/or second timer for a faster SSD 54), or follow one
or more other adjustment rules for the first timer and/or the
second timer.

In one embodiment, the journal module 908 may be
substantially similar to the I/O journal filter 282 described
above. In certain embodiments, the journal module 908 may
record or store storage commands, associated data and/or
metadata, or the like in an order determined by the order
module 904, as described above. The journal module 908
may execute storage commands in an adjusted order, in one
embodiment, by recording or storing the storage commands
in a journal 340 in the adjusted order. The journal module
908, in various embodiments, may store or record storage
commands or associated data for multiple storage volumes,
multiple snapshots, multiple versions of a snapshot, or the
like.

In one embodiment, the destage module 910 is substan-
tially similar to the destage filter 370 described above. The
destage module 910, in certain embodiments, is configured
to destage, write, clean, copy, or move data from a journal
340 to a non-volatile storage device (e.g., a storage volume,
a data store 48, a solid-state storage device 54, a hard disk
drive 56, a backup server 62, a cloud storage provider 64, or
another backing store). The destage module 910, in one
embodiment, destages or writes data based on or according
to an order from the order module 904. For example, the
journal module 908 may store storage commands and/or
associated data in the order from the order module 904, the
order module 904 may reorder storage commands and/or
associated data from the journal 340, or the like.

The destage module 910, in certain embodiments, may
destage or write data from a single journal 340 to multiple
storage volumes, multiple snapshots, multiple snapshot ver-
sions, or the like. In one embodiment, the order module 904
may group or order storage commands in a journal 340 by
storage volume, by snapshots, by snapshot version, or the
like and the destage module 910 may destage or write back
data substantially in the order from the journal 340. In a
further embodiment, the destage module 910 may scan the
journal 340 to combine data and/or storage commands for
the same storage volume, the same snapshot, and/or the
same snapshot version from different locations within the
journal 340, while destaging or writing data for each indi-
vidual storage volume, snapshot, and/or snapshot version in
the order from the order module 904.

The destage module 910, in one embodiment, stored,
writes, or destages data from a journal 340 to a non-volatile
memory device by executing the storage commands
recorded in the journal 340 on the non-volatile memory
device. For example, the destage module 910 may execute
a sequence of write commands, write requests, or the like
from a journal 340 so that the data of the write commands
or requests is stored in a storage volume associated with the
write commands or requests. The destage module 910, in
certain embodiments, may execute storage commands from
a journal 340 in an order which the order module 904
determined for the storage commands (e.g., an adjusted
order, a reordering, or the like).

In one embodiment, the region management module 912
is configured to manage what ratio or percentage of a journal
340, of a data store 48, of a solid-state storage device 54, of
a hard disk drive 56, or the like is used to store different
types of data (e.g., read data and write data, mirrored data
and non-mirrored data, or the like). For example, in certain

US 9,423,978 B2

63

embodiments, as described above, write data, write requests,
or the like are mirrored (e.g., a copy of the data is main-
tained) in multiple journals 340 of a storage array or data
store 48 (e.g., mirrored in a first journal 340 maintained in
a first SSD 54A and in a second journal 340 maintained in
a second SSD 54B, or the like). The region management
module 912 may mirror or maintain a copy of cached write
data at least until the destage module 910 destages, cleans,
or otherwise writes the data to its destination (e.g., a storage
volume of a hard disk drive 56), to provide redundancy or
the like. The region management module 912, in a further
embodiment, may cache read data without mirroring the
cached read data, since the read data is already stored in its
intended location (e.g., a storage volume, a hard disk drive
56, or the like). For example, in response to a read miss for
a block of data, a range of data, or the like, the journal
module 908 may read the data and store the data back in the
journal 340, to satisfy the read request causing the read miss
or the like.

The region management module 912, in certain embodi-
ments, may dynamically adjust a boundary between mir-
rored, cached write data and non-mirrored, cached read data,
may assign or adjust a storage capacity for mirrored, cached
write data and/or for non-mirrored, cached read data, or may
otherwise allocate capacity or room in one or more journals
340. The region management module 912 may base a
boundary or storage capacity for mirrored and non-mirrored
data, for read data and write data, or for other types of
cached data based on storage requests received for the data,
based on a current workload, based on a current use case,
based on a ratio of received write commands and received
read commands, a rate of receiving write commands, a rate
of receiving read commands, or the like.

For example, the region management module 912 may
increase a storage capacity for cached, mirrored, write data
in response to a write request, in response to a threshold
number of write requests, in response to more write requests
than read requests, or the like, may increase a storage
capacity for cached, non-mirrored, read data in response to
a read request, in response to a threshold number of read
requests, in response to more read requests than write
requests, or the like. By dynamically adjusting a storage
capacity for mirrored data compared to non-mirrored data, in
certain embodiments, the region management module 912
may allow an optimal and/or efficient use of storage capac-
ity, by reducing an amount of mirrored data when possible,
allowing twice the amount of non-mirrored data to be stored
in its place, or the like.

FIG. 10 depicts one embodiment of a system 920 for
journal management. In the depicted embodiment, one or
more of the initiators 38 A-38C are sending block command
packets to the primary data storage system 28 that relate to
the three different storage volumes, volume 01, volume 02,
and volume 03. Each of the block command packets have
been processed to generate an 1OB, such as IOB 182.

The buffer module 906 places each IOB that is received
into the input queue 300. The order module 904 processes
each of the IOBs in the queue 300 in the order that the IOB
was received in the queue 300 (e.g., an original time
sequence order). In the depicted embodiment, the order
module 904 groups or reorders IOBs from the queue 300
according to the storage volume to which an IOB belongs,
based on a VolID field 222 of the IOB or the like. In a further
embodiment, the order module 904 may group or reorder
IOBs from the queue 300 according to a snapshot or
snapshot version to which an IOB belongs, based on a
LayerID field 242 of the IOB or the like, may order IOBs

20

25

40

45

50

55

64

based on both a storage volume and a snapshot or snapshot
version, and/or may order IOBs based on another factor,
attribute, or characteristic of the IOBs. In the depicted
embodiment, the order module 904 groups or orders the
IOBs into a first grouping 922 of 10Bs for storage volume
01, a second grouping 924 of IOBs for storage volume 02,
and a third grouping 926 of IOBs for storage volume 03,
each within the execution queue 314.

The journal module 908, in the depicted embodiment,
records or writes IOBs from the execution queue 314 to a
first journal 340¢ maintained in a first solid-state storage
device 54a and to a second journal 3405 maintained in a
second solid-state storage device 544, so that the IOBs and
included data of write commands from the one or more
initiators 38A-38C is mirrored to provide redundancy. The
destage module 910, in the depicted embodiment, writes,
cleans, copies, moves, and/or destages data from the jour-
nals 3404a-b to one or more hard disk drives 56. The destage
module 910, in certain embodiments, may leave clean,
destaged data in at least one of the journals 3404a-b to service
read requests from the journals 3404-b (e.g., from a journal
page 342 paged into volatile memory 52A or the like).

The region management module 912, in the depicted
embodiment, dynamically sets a boundary 928 between
mirrored write data cached in the journals 340q-6 and
non-mirrored read data cached in the journals 340a-b. For
example, the region management module 912 may adjust the
boundary 928 and allotted storage capacities of the journals
340a-b and/or the solid-state storage devices 54a-b by
evicting mirrored write data from the journals 340a-5 (e.g.,
after the data has been destaged/cleaned), by evicting non-
mirrored read data from the journals 340q-6 and/or the
solid-state storage devices 54a-b, by loading or writing
additional non-mirrored read data into the journals 340a-b
and/or the solid-state storage devices 54a-b, or the like.

In the depicted embodiment, in response to a read miss for
the journals 340a-b (e.g., data of a read request not being
stored in one of the journals 340a-b), the region manage-
ment module 912 places one or more IOBs for the read
request into the input queue 300, so that the data of the read
request is stored in at least one of the journals 340a-b. In the
depicted embodiment, because read data is already stored in
the hard disk drive 56 or another backing store, the journal
module 908 is configured to store data of read commands in
a single journal 340a or 3405, instead of mirroring the data
as it would for data of a write command. For example, the
journal module 908 may determine whether an 10B is for a
read command or a write command based on a Command
field 230 for the I0OB, and may mirror IOBs for write
commands without mirroring IOBs for read commands. In
this manner, the region management module 912 may
dynamically adjust a boundary 928 or ratio of mirrored write
data to non-mirrored read data, as described above.

Because, in the depicted embodiment, cached read data is
not mirrored while cached write data is mirrored, a total
amount of unique data cached in the journals 340a-b
increases in response to the region management module 912
decreasing the storage capacity used for storing mirrored
write data and increasing the storage capacity used for
storing non-mirrored read data. For example, if one mirrored
journal page 342 of mirrored write data is evicted from each
of the journals 340a-b, the resulting storage capacity will
allow two journal pages 342 of non-mirrored read data to be
cached in its place, resulting in an increase in an amount of
unique data cached in the journals 340a-b. In this manner,
the region management module 912, in one embodiment,
may provide the advantages of redundancy for the mirrored

US 9,423,978 B2

65

write data while providing an increase in storage capacity
for the non-mirrored read data, and may dynamically adjust
each based on a use case or other factor.

FIG. 11 depicts one embodiment of a method 1000 for
journal management. The method 1000 begins and the
receiver module 902 receives 1002 a plurality of storage
commands (e.g., storage requests, IOBs, or other /O com-
mands) for different storage volumes, for different snap-
shots, for different layers or versions (e.g., time periods) of
a snapshot, or the like. The order module 904 adjusts 1004
an order of the received 1002 storage commands. In one
embodiment, the order module 904 adjusts 1004 an order for
or reorders the storage commands so that storage commands
for a storage volume are grouped together. In a further
embodiment, the order module 904 adjusts 1004 an order for
or reorders the storage commands based on which layer or
version of a snapshot the storage commands are associated.
One or more of the buffer module 906, the journal module
908, and the destage module 910 executes 1006 the received
1002 storage commands in the adjusted 1004 order (e.g., the
buffer module 906 buffers or lists the storage commands in
the adjusted 1004 order, the journal module 908 records the
storage commands and/or data of the storage commands in
a journal 340, the destage module 910 writes data of the
storage commands from a journal 340 to a non-volatile
storage device 54, 56, or the like) and the method 1000 ends.

FIG. 12 depicts a further embodiment of a method 1100
for journal management. The method 1100 begins and the
buffer module 906 starts 1102 a first timer and a second
timer. In certain embodiments, the second timer has a longer
time period than the first timer. The buffer module 906
determines 1104 when the first timer has expired. When the
buffer module 906 determines 1104 that the first timer has
expired, the buffer module 906 determines 1106 whether any
write requests have been received since the first timer started
1102. If the buffer module 906 determines 1106 that at least
one write request has been received, the buffer module 906
resets 1108 the first timer. If the buffer module 906 deter-
mines 1106 that no write requests have been received since
the first timer started 1102, the buffer module 906 writes
1112 data from a buffer (e.g., a volatile memory 52, an
execution queue 314, a write buffer, a write combine buffer,
or the like) to non-volatile storage, such as a journal 340, one
or more non-volatile media 54 of a storage device 48 (e.g.,
solid-state storage 54, a hard disk drive 56), or the like.

The buffer module 906 determines 1110 when the second
timer has expired. When the buffer module 906 determines
1110 that the second timer has expired, the buffer module
906 writes 1112 data from the buffer to non-volatile storage.
If the buffer module 906 determines 1104, 1110 that neither
the first nor the second timer have expired, the buffer module
906 continues to wait and/or monitor the first and second
timers, and the method 1100 continues.

FIG. 13 depicts another embodiment of a method 1200 for
journal management. The region management module 912
mirrors 1202 cached write data in one or more journals 340.
The journals 340 may be stored in one or more of a data store
48A, 48B; an SSD 54A, 54B; a hard disk drive 56A, 56B;
a volatile memory 48A, 48B; or the like. The region man-
agement module 912 stores 1204 cached read data in the one
or more journals 340 without mirroring the cached read data.
The region management module 912 adjusts 1206 a ratio of
storage capacity of the one or more journals 340 used for
storing 1202 mirrored cached write data to storage capacity
of the one or more journals 340 used for storing 1204

40

45

55

66

non-mirrored cached read data based on storage requests for
data of the one or more journals 340 or the like and the
method 1200 ends.

A means for mirroring cached write data in one or more
journals 340, in various embodiments, may include a man-
agement module 900, a region management module 912, a
journal module 908, a storage processor 46, a data store 48,
a solid-state storage device 54, a disk drive 56, a device
driver, a memory controller, a storage controller, other logic
hardware, and/or other executable code stored on a computer
readable storage medium. Other embodiments may include
similar or equivalent means for mirroring cached write data
in one or more journals 340.

A means for storing cached read data in one or more
journals 340 without mirroring the cached read data, in
various embodiments, may include a management module
900, a region management module 912, a journal module
908, a storage processor 46, a data store 48, a solid-state
storage device 54, a disk drive 56, a device driver, a memory
controller, a storage controller, other logic hardware, and/or
other executable code stored on a computer readable storage
medium. Other embodiments may include similar or equiva-
lent means for storing cached read data in one or more
journals 340 without mirroring the cached read data.

A means for adjusting a ratio of storage capacity of one or
more journals 340 used for storing mirrored cached write
data to storage capacity of the one or more journals 340 used
for storing non-mirrored cached read data, in various
embodiments, may include a management module 900, a
region management module 912, a journal module 908, a
storage processor 46, a data store 48, a solid-state storage
device 54, a disk drive 56, a device driver, a memory
controller, a storage controller, other logic hardware, and/or
other executable code stored on a computer readable storage
medium. Other embodiments may include similar or equiva-
lent means for adjusting a ratio of storage capacity of one or
more journals 340 used for storing mirrored cached write
data to storage capacity of the one or more journals 340 used
for storing non-mirrored cached read data.

The present disclosure may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the disclosure is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

1. An apparatus comprising:

a buffer module configured to queue input/output (I/O)
commands associated with different snapshots of a
volume, the different snapshots associated with differ-
ent time periods;

an order module configured to reorder the I/O commands
based on which of the snapshots the I/O commands are
associated with;

a journal module configured to record the reordered 1/O
commands and associated data in a journal; and

a region management module configured to mirror write
data of the /O commands, configured to store read data
of the /O commands in the journal without mirroring
the read data, and configured to manage an allocation
of storage capacity of the journal between the write
data and the read data.

2. The apparatus of claim 1, further comprising a destage

module configured to write data of the reordered /O com-

US 9,423,978 B2
67 68

mands from the journal to an associated storage location
according to the reordering of the I/O commands.

3. The apparatus of claim 1, wherein the order module is
configured to reorder the I/O commands based on which
storage volume of a plurality of storage volumes the /O 5
commands are associated.

4. The apparatus of claim 1, wherein the journal is stored
in a non-volatile memory medium of a storage appliance.

#* #* #* #* #*

